Bulletin of the AAS • Vol. 53, Issue 1 (AAS237 abstracts)

ALMA Observations and Multi-line Modeling of the Galaxy Center of NGC 3351

Y. Teng¹, K. Sandstrom¹, J. Sun², E. Schinnerer³, J. Smith⁴, A. Bolatto⁵, F. Israel⁶, A. Leroy², F. Walter³, B. Groves⁷, A. Usero⁸, E. Rosolowsky⁹, A. Schruba¹⁰, D. Kruijssen¹¹, F. Bigiel¹², G. Blanc¹³

Published on: Jan 11, 2021

Updated on: Jan 22, 2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

¹Physics, University of California San Diego, La Jolla, CA,

²Astronomy, The Ohio State University, Columbus, OH,

³Max Planck Institute for Astronomy, Heidelberg, Germany, ⁴The University of Toledo, Toledo, OH,

⁵Astronomy, University of Maryland, College Park, MD, ⁶Leiden University, Leiden, Netherlands,

⁷Australian National University, Canberra, Australia,

⁸Observatorio Astronomico Nacional, Madrid, Spain,

⁹Physics, University of Alberta, Edmonton, AB, Canada,

¹⁰Max Planck Institute for Extraterrestrial Physics, Garching, Germany.

¹¹Heidelberg University, Heidelberg, Germany, ¹²University of Bonn, Bonn, Germany,

¹³Observatories of the Carnegie Institution for Science, Pasadena, CA

The CO-to- H_2 conversion factor (α_{CO}) is critical to studying molecular gas and star formation in galaxies. The value of α_{CO} has been observed to vary in different regions of a galaxy, and it is dependent on environmental parameters such as gas densities and temperatures. Previous observations on ~kpc scales revealed lower α_{CO} values in the centers of some nearby star-forming galaxies, including NGC 3351. We present new ALMA Band 3, 6, and 7 observations of 12 CO, 13 CO and 18 O rotational lines on ~50 pc scales in the center of NGC 3351. Using multi-line modeling and a Bayesian likelihood analysis, we constrain possible values of the H_2 density, kinetic temperature, CO column density, and CO isotopologue abundances at each pixel. The α_{CO} distribution can be derived from the CO column densities and then compared with other parameters. We present initial results from this analysis investigating the physical processes that control α_{CO} in galaxy centers.