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I. SCHWARZSCHILD GEOMETRY

The Schwarzschild metric is used to characterize the geom-
etry of spacetime outside a spherically symmetric mass at rest.
As derived in the section IV of ”Gravitational Wave Theories”,
the line elementds2 of the Schwarzschild geometry can be
represented as

(ds)2 = − (1 − 2M/r) (dt)2 +
1

1 − 2M/r
(dr)2

+r2[(dθ2) + sin2 θ(dφ)2] (1)

Thus, the Schwarzschild metric is represented as

gαβ =




−(1 − 2M/r) 0 0 0

0 (1 − 2M/r)−1 0 0

0 0 r2 0

0 0 0 r2 sin2 θ




(2)

The geodesic equation in the four-dimensional spacetime is
represented as

d2xα

dλ2
+ Γα

βγ

dxβ

dλ

dxγ

dλ
= 0 (3)

whereλ is called affine parameter,x0 = t, x1 = r, x2 = θ,
x3 = φ, and

Γα
βγ =

1
2
gα`

(
∂g`γ

∂xβ
+

∂g`β

∂xγ
− ∂gβγ

∂x`

)
(4)

Consider motions on an equatorial plane,θ = π/2, the
Schwarzschild line element in (1) is reduced to

(ds)2 = − (1 − 2M/r) (dt)2 +
1

1 − 2M/r
(dr)2

+r2(dφ)2 (5)

The geodesic equation in (3) of a free test particle in a
Schwarzschild spacetime can thus be expressed as

∂2t

∂λ2
=

2M

2Mr − r2

∂t

∂λ

∂r

∂λ
(6)

∂2r

∂λ2
= − M

2Mr − r2

(
∂r

∂λ

)2

+
M (2M − r)

r3

(
∂t

∂λ

)2

− (2M − r)
(

∂φ

∂λ

)2

(7)

∂2θ

∂λ2
= 0 (8)

∂2φ

∂λ2
=

2
r

∂r

∂λ

∂φ

∂λ
(9)

Eqn.(9) is rearranged as

∂2φ/∂λ2

∂φ/∂λ
= −2∂r/∂λ

r

implying that

ln
∂φ

∂λ
= −2 ln r + ln c1

or

∂φ

∂λ
=

c1

r2
(10)

wherec1 is a constant of integration.
Similarly, (6) is rearranged as

∂2t/∂λ2

∂t/∂λ
=

2M∂r/∂λ

r(2M − r)

implying that

ln
∂t

∂λ
= ln

(
1

1 − 2M/r

)
+ ln c2

or

∂t

∂λ
=

c2

1 − 2M/r
(11)

wherec2 is another constant of integration.
A geodesic satisfies the Euler-Lagrange equation

d

dσ

(
∂L

∂xµ/∂σ

)
=

∂L

∂xµ
(12)

whereL is the Lagrangian. IfL is explicitly independent of a
particularxµ, then∂L/∂xµ = 0, implying that∂L/(∂xµ/∂σ)
is a conserved quantity with respect toσ, a real argument. For
null geodesic, describing massless particles such as photons,
σ is replaced with the affine parameterλ.

In a flat spacetime, we have

dt2 = dx2 − ds2 (13)

The time variablet in the geodesic frame (dx = 0) is called
the proper timeτ , namely,

dτ2 = −ds2 (14)

which is less than or equal todt2 In a general spacetime, (14)
can be generalized to

dτ =
√
−ds2 =

√
−gµνdxµdxν (15)

by applying the definition of a line element in spacetime.
By Hamilton’s principle, a geodesic must satisfy

∫
δLdλ = 0 (16)
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If

L =

√
−gµν

dxµ

dλ

dxν

dλ
(17)

then (16) is reduced to

δ

∫
dτ = 0 (18)

which implies that the proper time along the geodesic is the
minimum among all possible paths, and (17) is the Lagrangian
of the system.

By substituting (17), withφ-independence, into (12), we
derive

∂L

∂φ/∂λ
=

−2g44(dφ/dλ)
2
√
−gµν(dxµ/dλ)(dxν/dλ)

= −g44
dφ

dτ
= −c1 (19)

wherec1 is a constant. If theg44 of the Schwarzschild metric
in (5) is adopted, (19) is reduced to

r2 dφ

dτ
= c1 (20)

which is the conservation of angular momentum. Note that
(10) for light has the same form as (20), withλ changed toτ .

Similarly, by applyingL =
√
−gµν(dxµ/dλ)(dxν/dλ) and

its t independence to (12), we have

∂L

∂t/∂λ
= −g00

dt

dτ
= c2 (21)

where c2 is a constant. By substitutingg00 of the
Schwarzschild metric in (2) into (21), we obtain

(
1 − 2M

r

)
dt

dτ
= c2 (22)

which is the same as (11).
By substituting the relation ofdτ in (15) into (21), we obtain

c2 =
−g00√

−g00 − g11(dr/dt)2 − r2[(dθ/dt)2 + sin2 θ(dφ/dt)2]

=
√
−g00√

1 + g11(dr/dt)2/g00 + r2[(dθ/dt)2 + sin2 θ(dφ/dt)2]/g00

(23)

In the Newtonian limit (as ifr → ∞), g00 → −1 andg11 → 1,
thus (23) can be simplified as

c2 '
√
−g00√

1 − (dr̃/dt)2
'

√
−g00

[
1 +

1
2

(
dr̃

dt

)2
]

(24)

where dr̃ =
√

(dr)2 + (rdθ)2 + (r sin θdφ)2 is the spatial
displacment in spherical coordinates. If we substitute theg00

of the Schwarzschild metric into (24), we have

c2 = (1 − M/r)[1 + (dr̃/2dt)2] ' 1 − M/r +
1
2

(
dr̃

dt

)2

which can be identified as the conservation of energy in
Newtonian physics. Therefore,c2 implies the quantity of
energy conservation.

A light ray is parameterized byλ asxα(λ), which satisfies

ds2 = 0

implying that (ds/dλ)2 = 0, or explicitly

gαβ
dxα

dλ

dxβ

dλ
= 0 (25)

By substituting (10), (11) and the Schwarzchild metric in (5)
into (25), we have

− c2
2

1 − 2M/r
+

(∂r/∂λ)2

1 − 2M/r
+

c2
1

r2
= 0

leading to
(

∂r

∂λ

)2

= c2
2 −

c2
1(r − 2M )

r3
(26)

which can be reduced to

1
c2
1

(
dr

dλ

)2

=
1
b2

− Weff(r) (27)

where

b =
c1

c2

Weff(r) =
1
r2

(1 − 2M/r) (28)

Since(∂r/∂λ)2/c2
1 > 0, (27) implies that

Weff (r) ≤ 1
b2

(29)

which implies a turning point atr that satisfiesWeff(r) =
1/b2.

By substitutingc1 = r2(∂φ/∂λ), derived from (10), into
(26), we obtain

dφ

dr
=

∂φ/∂λ

∂r/∂λ

=
b

r2
√

1 − (b2/r2)(1 − 2M/r)
(30)

whereφ andr can be seen as the angle and distance in polar
coordinate, with the mass as the origin. Thus, we can plot out
the trajectory of light coming fromr = ∞ by Eqn.(30).

Fig. 1. Distribution ofWeff(r) in (28).
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Fig.1 shows the distribution ofWeff(r) in (28), where a
peak occurs atr = 3M . By taking the derivative of (28) with
respect tor, we have

dWeff

dr
=

2
r3

(
3M

r
− 1
)

which is equal to zero at the turning pointr = 3M , at which
the maximum value is

Weff,max =
1

27M2

Fig. 2. Distribution ofWeff (r) (———), b = 5M . The dashed line is1/b2.

Fig.2 shows the distribution ofWeff(r), with b = 5M <
3
√

3M . Fig.3 shows a light ray, which takes a plunge orbit. It
is obtained by solving (30) with the fourth-order Runge-kutta
method. SinceWeff 6= 1/b2, there is no turning point.

Fig. 3. Light ray takes a plunge orbit whenb = 5M < 3
√

3M . The
outermost circle is atr = 100.

Next, consider the case withb > 3
√

3M , with the distri-
bution of Weff(r) shown in Fig.4. The line of1/b2 intersects
with Weff = 1/b2 nearr = 4M , which is a turning point due
to the constraint in (29). The photon is scattered, with its orbit
shown in Fig.5.

The case withb = 3
√

3M leads to a circular orbit, in which
light gets trapped. However, the orbit is numerically unstable.

Fig. 4. Distribution ofWeff(r) (———), b = 5.65M . The dashed line is
1/b2.

Fig. 5. Light ray takes a scatter orbit whenb = 5.65M > 3
√

3M . The
outermost circle is atr = 100.

II. K ERR GEOMETRY

The angular momentum of a black-hole can be observed
from the redshift of its inner accretion disk reflection. In
geometrized unit,c = G = 1, M is in unit of length, and
a = J/M also has a unit of length. The horizon radius of
a Kerr black-hole,r± = M ±

√
M2 − a2, exists only when

a ≤ M . If M is normalized to 1 (unitless), then the normalized
a falls within the range from 0 to 1.

The Kerr geometry is used to describe the geometry outside
a rotating, spherical mass. In contrast to Schwarzschild black-
holes, the properties of a Kerr black-hole are specified in terms
of its massM and angular momentumJ . The line element
ds2 is represented as [1]

(ds)2 = −
(

1 − 2Mr

r2 + J2 cos2 θ/M2

)
(dt)2

− 4Jr sin2 θ

r2 + J2 cos2 θ/M2
dφdt

+
r2 + J2 cos2 θ/M2

t2 − 2Mr + J2/M2
(dr)2

+(r2 + J2 cos2 θ/M2)(dθ2)

+
(

r2 +
J2

M2
+

2J2r sin2 θ/M

r2 + J2 cos2 θ/M2

)
sin2 θ(dφ)2(31)

3
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which reduces to the Schwarzchild line element in (1) when
J = 0.

General geodesics in a Kerr geometry do not lie in a plane,
except equatorial orbits. Consider motions on an equatorial
plane (θ = π/2), the Kerr line element in (31) is reduced to

(ds)2 = −
(

1 − 2M

r

)
(dt)2 − 4aM

r
dφdt

+
r2

∆2
(dr)2 + (r2 + a2 + 2a2M/r)(dφ)2 (32)

where

a = J/M

∆ = r2 − 2Mr + a2

Thus, the corresponding Kerr metric is

gαβ =




−(1 − 2M/r) 0 0 −2aM/r

0 r2/∆ 0 0

0 0 0 0

−2aM/r 0 0 r2 + a2 + 2a2M/r




(33)

As in a Schwarzschild geometry, the Euler-Lagrange equa-
tion in (12) can be applied to derive the equations of energy
conservation and angular-momentum conservation. Consider
a light ray, the proper timeτ should be replaced with the
affine parameterλ. By applying the Kerr metric in (33) with
t-independence in (21), we have

−c2 = g0β
dxβ

dλ
= g00

dt

dλ
+ g04

dφ

dλ

or

−c2 = −
(

1 − 2M

r

)
dt

dλ
− 2aM

r

dφ

dλ
(34)

Similarly, by applying the Kerr metric in (33) withφ-
independence in (19), we have

c1 = g4β
dxβ

dλ
= g04

dt

dλ
+ g44

dφ

dλ

or

c1 = −2aM

r

dt

dλ
+ (r2 + a2 + 2a2M/r)

dφ

dλ
(35)

The two conservation equations in (34) and (35) are repre-
sented as




−(1 − 2M/r) −2aM/r

−2aM/r r2 + a2 + 2a2M/r






dt/dλ

dφ/dλ




=




−c2

c1


 (36)

which can be solved to have



dt/dλ

dφ/dλ


 =

−1
∆




r2 + a2 + 2a2M/r 2aM/r

2aM/r −(1 − 2M/r)






−c2

c1




or

dt

dλ
=

1
∆

[(
r2 + a2 +

2a2M

r

)
c2 −

2aM

r
c1

]
(37)

dφ

dλ
=

1
∆

[
2aM

r
c2 +

(
1 − 2M

r

)
c1

]
(38)

where∆ is the determinant of the2 × 2 matrix in (36).
By substituting the Kerr metric into the governing equation

of light in (25), we have

−
(

1 − 2M

r

)(
dt

dλ

)2

− 4aM

r

dφ

dλ

dt

dλ
+

r2

∆

(
dr

dλ

)2

+
(

r2 + a2 +
2a2M

r

)(
dφ

dλ

)2

= 0 (39)

By subtitutingdt/dλ anddφ/dλ in (37) and (38), respectively,
into (39), we obtain

1
c2
1

(
dr

dλ

)2

=
1
b2

− Weff(r) (40)

which has the same form as (27), but with

Weff(r) =
1
r2

[
1 − (a/b)2 − 2M

r
(1 − σa/b)2

]
(41)

whereb = c1/c2 and

σ =





1, prograde (corotating) orbit

−1, retrograde (counterrotating) orbit

Note that by takinga = 0, (41) reduces to the case of
Schwarzschild geometry in (28).

By using the expressions ofdφ/dλ anddr/dλ in (38) and
(40), respectively, we obtain an expression ofdr/dφ as

dr

dφ
=

dr/dλ

dφ/dλ
(42)

which describes the light trajectory in terms ofa, b, r and
M . Note thatφ andr are the angle and distance in the polar
coordinate with the mass at the origin. Thus, light trajectories
around a Kerr black hole can be obtained by solving (42) with
the fourth-order Runge-Kutta method.

Fig.6 shows a case withb = 0.1M , in which both the
prograde and retrograde photons follow plunge orbits.

Fig.7 shows a case withb = 0.125M , in which both the
prograde and retrograde photons follow scatter orbits.

Fig.8 shows a case of scatter orbits which are very close
to circular orbits since it is difficult to simulate stable circular
orbits by using numerical method.

4
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Fig. 6. Prograde orbit (———) and retrograde orbit (− −−), b = 0.1M .

Fig. 7. Prograde orbit (———) and retrograde orbit (−−−), b = 0.125M .

III. G RAVITATIONAL WAVE OF A BINARY SYSTEM

In linearized gravity, we assume

gµν = ηµν + hµν (43)

where ηµν is the Minkowski metric, andhµν is a small
perturbation. Under the gauge condition of

∂

∂xλ
h′λ

ν = 0 (44)

the Einstein’s equations can be derived as [6]
(
∇2 − 1

c2

∂2

∂t2

)
h′

µν(t, xα) = −KTµν (t, xα) (45)

whereK = 16πG/c4, and

h′
µν = hµν − 1

2
hηµν (46)

By representingTµν and h′
µν in the frequency domain, we

have

Tµν(t, xα) =
∫ ∞

−∞
Tµν(ω, xα)e−iωtdω

h′
µν(t, xα) =

∫ ∞

−∞
h′

µν(ω, xα)e−iωtdω (47)

Fig. 8. Prograde orbit (———) and retrograde orbit (−−−), b = 0.106M .

which are then substituted into (45) to have
∫ ∞

−∞

(
∇2 − 1

c2

∂2

∂t2

)
h′

µν(ω, xα)e−iωtdω

=
∫ ∞

−∞

(
∇2 +

ω2

c2

)
h′

µν(ω, xα)e−iωtdω

= −K

∫ ∞

−∞
Tµν(ω, xα)dω (48)

Thus, the Einstein’s equations in the frequency domain can be
obtained as(

∇2 +
ω2

c2

)
h′

µν(ω, xα) = −KTµν(ω, xα) (49)

Assume that the source of the GW is confined in a region
|xα| ≤ ε, which is much smaller than the wavelength of the
emitted GW, namely,

λGW =
2πc

ω
� ε

which leads to a slow-motion approximation

v = ωε � c (50)

To solve (49), the equations are integrated inside and outside
the source region, respectively, then the two solutions are
matched on the boundary of the source region.

A. Wave with Isotropic Source

At first, consider a solution of a point source, which is
independent ofφ and θ. Outside the source region, (49) can
be represented in the spherical coordinate as

1
r2

∂

∂r
r2 ∂h′

µν

∂r
+

ω2

c2
h′

µν = 0 (51)

of which the solution can be represented as

h′
µν(ω, r) =

Aµν(ω)
r

eiωr/c +
Bµν(ω)

r
e−iωr/c (52)

By causality, only the wave emitted from the source is ac-
cepted, thus (52) is reduced to

h′
µν(ω, r) =

Aµν(ω)
r

eiωr/c (53)

5
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Inside the source region, by integrating each term in (49)
over the source volumeVε, we have

∫

Vε

(
∇2 +

ω2

c2

)
h′

µν(ω, xα)dV

= −K

∫

Vε

Tµν(ω, xα)dV (54)

Next, the left-hand side of (54) can be reduced to
∫

Vε

∇2h′
µνdV =

∫

Vε

∇ · ∇h′
µνdV

=
∫

Sε

∇h′
µνdS ' 4πε2

dh′
µν

dr

∣∣∣∣
r=ε

(55)

By substituting (53) into (55), we have
∫

Vε

∇2h′
µνdV ' 4πε2

dh′
µν

dr

∣∣∣∣
r=ε

= 4πε2

(
d

dr

Aµν(ω)
r

eiωr/c

)

r=ε

= 4πε2

(
−Aµν

r2
eiωr/c +

Aµν

r

iω

c
eiωr/c

)

r=ε

' −4πAµν(ω) (56)

Then, by substituting (56) into (54), we obtain

−4πAµν(ω) +
∫

Vε

ω2

c2
h′

µν(ω, xα)dV

= −K

∫

Vε

Tµν(ω, xα)dV (57)

Since
∫

Vε

ω2

c2
h′

µν(ω, xα)dV <
ω2

c2

∣∣h′
µν

∣∣
max

4
3
πε3

which is negligible, (57) can be reduced to

−4πAµν(ω) = −K

∫

Vε

Tµν(ω, xα)dV (58)

leading to

Aµν(ω) =
4G

c4

∫

Vε

Tµν(ω, xα)dV (59)

Finally, by substituting (59) into (53), we have

h′
µν(ω, r) =

4G

c4r
eiωr/c

∫

Vε

Tµν(ω, xα)dV

which can be transformed to the time domain as

h′
µν(t, r) =

4G

c4r

∫

Vε

Tµν(t − r/c, xα)dV (60)

A second-rank tensor can be represented as

¯̄T = T αβ ēαēβ = Tαβ ēαēβ (61)

where

Tαβ = gαα′gββ′T α′β′

ēα and ēα are dual vectors, serving as the basis vectors. If
gαβ represents a Minkowski metric, we haveTαβ = T αβ.
In this case, any equation represented in covariant form or

contravariant form will be the same, the only difference is the
coordinate system or basis vectors chosen. Hence, (60) implies
the contravariant form as

h′µν(t, r) =
4G

c4r

∫

Vε

T µν(t − r/c, xα)dV (62)

Consider the conservation law of a flat spacetime

∂T µν

∂xν
= 0 (63)

which is decomposed into space and time components as

1
c

∂T µ0

∂t
= −∂T µα

∂xα
(64)

By integrating (64) over the source volumeVε, we have
∫

Vε

1
c

∂T µ0

∂t
dV = −

∫

Vε

∂T µk

∂xα
dV

= −
∫

S

T µαdSα (65)

On the surfaceS,

T µν = 0 (66)

Thus, (65) is reduced to

1
c

∂

∂t

∫

Vε

T µ0dV = 0 (67)

Next, multiplying (64) byxk and integrating over the source
volumeVε, we have

1
c

∂

∂t

∫

Vε

T µ0xkdV = −
∫

Vε

∂T µα

∂xα
xkdV

= −
[∫

Vε

∂T µαxk

∂xα
dV −

∫

Vε

T µα ∂xk

∂xα
dV

]

= −
∫

S

T µαxkdSα +
∫

Vε

T µkdV =
∫

Vε

T µkdV (68)

where the last step is derived by imposingT µν = 0 on S,
as mentioned in (66). SinceT µk is symmetric, (68) can be
rewritten as

1
2c

∂

∂t

∫

Vε

(
T µ0xk + T k0xµ

)
dV =

∫

Vε

T µkdV (69)

Next, consider (64) withµ = 0,

1
c

∂T 00

∂t
+

∂T 0α

∂xα
= 0 (70)

By multiplying (70) with xkxn and integrating over the source
volumeVε, we have

1
c

∂

∂t

∫

Vε

T 00xkxndV = −
∫

Vε

∂T 0α

∂xα
xkxndV

= −
[∫

Vε

∂T 0αxkxn

∂xα
dV

−
∫

Vε

T 0α

(
∂xk

∂xα
xn + xk ∂xn

∂xα

)
dV

]

= −
∫

S

T 0αxkxndS +
∫

Vε

(
T 0kxn + T 0nxk

)
dV

=
∫

Vε

(
T 0kxn + T 0nxk

)
dV (71)

6



Final Report for Special Project, 2016 Spring, 2016 Fall & 2017 Spring, Department of Electrical Engineering, NTU

whereT µν = 0 on S.
By differentiating (71) with respect tox0 = ct, we obtain

1
c2

∂2

∂t2

∫

Vε

T 00xkxndV

=
1
c

∂

∂t

∫

Vε

(
T 0kxn + T 0nxk

)
dV (72)

By substituting (69) into (72), we have
∫

Vε

T kndV =
1

2c2

∂2

∂t2

∫

Vε

T 00xkxndV (73)

Define the quadrupole moment tensor of the system as

qkn(t) =
1
c2

∫

Vε

T 00(t, xα)xkxndV (74)

which is a function of time only. Thus, (73) can be rewritten
as ∫

Vε

T kndV =
1
2

d2

dt2
qkn(t) (75)

From (67), we have
∫

Vε

T µ0dV = const

Thus, comparing with (62), we have

h′µ0 = const

Since we are only interested in the time-dependent part of the
field, we let

h′µ0 = 0 (76)

By (76) and substituting (75) into (62),h′(t, r) can be repre-
sented as

h′µ0 = 0, µ = 0, 1, 2, 3

h′kn =
2G

c4r

d2

dt2
qkn(t − r/c), k, n = 1, 2, 3 (77)

By the same argument after (61), the covariant form of (77)
is

h′
µ0 = 0, µ = 0, 1, 2, 3

h′
kn =

2G

c4r

d2

dt2
qkn(t − r/c), k, n = 1, 2, 3 (78)

A general gravitational plane-wave (GPW) propagating in
thez-direction can be represented with a (covariant) perturba-
tion tensor

hµν(t, z) =




0 0 0 0

0 h+(u) h×(u) 0

0 h×(u) −h+(u) 0

0 0 0 0




(79)

whereh+(u) andh×(u) are the amplitudes of the+-polarized
and ×-polarized GPW, respectively. Eqn.(79) indicates that
the polarization of the GPW is transverse to its propagation
direction, namely,

nαhαβ = 0 (80)

wherenα represents the propagation direction. The sum of the
diagonal components inhµν(t, z) is zero (traceless), namely,

δαβhαβ = 0 (81)

Define an operator which projects a vector onto the plane
transverse to the propagation direction,n̂, as

Pαβ = δαβ − nαnβ (82)

Then, define a transverse-traceless projector as

Pαβγλ = PαγPβλ − 1
2
PαβPγλ (83)

which extracts the transverse-traceless (TT) part of a second-
rank tensor. Thus, the GW and the quadrupole moment pro-
jected with the TT projector become

hTT
αβ = Pαβγλhγλ = Pαβγλh′

γλ = h′TT
αβ

qTT
αβ = Pαβγλqγλ (84)

Pαβγλ also have the properties

PαβγλPγλmn = Pαβmn

nαPαβγλ = nβPαβγλ = nγPαβγλ = nδPαβγδ = 0
δαβPαβγλ = δγδPαβγλ (85)

B. Wave with Binary Source

Consider a binary system of two celestial bodies,B1 and
B2, with massesm1 andm2, respectively, moving on a planar
(xy) coordinate system with the origin coincident with the
center of mass. The distances ofB1 and B2 from the center
of mass area1 anda2, respectively. Define

a = a1 + a2, M = m1 + m2, µ =
m1m2

m1 + m2
(86)

which imply

a1 =
m2a

M
, a2 =

m1a

M
(87)

By the Newton’s gravitation law, we have

Gm1m2

a2
= m1ω

2m2a

M

where

ω =

√
GM

a3
(88)

is the orbital angular frequency. Without loss of generality, the
orbits of B1 andB2 can be represented as

(x1, y1) =
(m2a

M
cos(ωt),

m2a

M
sin(ωt)

)

(x2, y2) =
(
−m1a

M
cos(ωt),−m1a

M
sin(ωt)

)
(89)

The energy-momentum tensor of this binary system is [4]

T 00 =
2∑

n=1

mnc2δ(x − xn)δ(y − yn)δ(z) (90)

7



Final Report for Special Project, 2016 Spring, 2016 Fall & 2017 Spring, Department of Electrical Engineering, NTU

By substituting (90) into (74), the quadrupole-moment tensor
is derived as

qxx = m1x
2
1 + m2x

2
2

qyy = m1y
2
1 + m2y

2
2

qxy = qyx = m1x1x2 + m2x1x2 (91)

By substituting the orbital coordinates in (89) into (91), we
have

qxx = µa2 cos2(ωt)
qyy = µa2 sin2(ωt)
qxy = qyx = µa2 cos(ωt) sin(ωt) (92)

By applying the definition in (86), the time-dependent com-
ponents of (92) can be calculated as

qxx = −qyy =
1
2
µa2 cos(2ωt)

qxy = qyx =
1
2
µa2 sin(2ωt) (93)

Consider a GW propagating in thez direction, or n̂ =
(0, 0, 1). The GW can be represented, by using (78), as

hTT
µ0 = 0, µ = 0, 1, 2, 3

hTT
mn(t, z) =

2G

c4z

d2

dt2
qTT
mn(t − z/c), m, n = 1, 2, 3 (94)

where

qTT
mn = Pαβmnqmn (95)

from the relation in (84). Then, by substituting (83) into (95),
qTT
kn can be calculated as

qTT
xx =

(
PxγPxδ −

1
2
PxxPγδ

)
qγδ

=
(

PxxPxx − 1
2
P 2

xx

)
qxx − 1

2
PxxPyyqyy

=
1
2
(qxx − qyy)

qTT
yy =

(
PyγPyδ −

1
2
PyyPγδ

)
qγδ

= −1
2
(qxx − qyy)

qTT
xy =

(
PxγPyδ −

1
2
PxyPγδ

)
qγδ

= PxxPyyqxy = qxy (96)

and the remaining components are all zeros. Summarizing
from (80), (94) and (96), a GW propagating in thez direction
can be represented as

hTT
µ0 = 0, hTT

zα = 0,

hTT
xx = −hTT

yy =
G

c4z

d2

dt2
(qxx − qyy),

hTT
xy =

2G

c4z

d2

dt2
qxy (97)

Finally, by substituting (93) into (97), we have

hTT
xx = −hTT

yy = − G

c4z
µa2(2ω)2 cos[2ω(t − z/c)]

hTT
xy = − G

c4z
µa2(2ω)2 sin[2ω(t − z/c)] (98)

which implies that the GW is circularly polarized and its
frequency is twice that of the orbital frequency.

The rate at which energy is carried away by a GW, as
represented in (94), is [5]

dEGW

dt
=

32G

5c5
µ2a4ω6 (99)

which is derived in the Appendix. By substituting (88) into
(99), we have another form

dEGW

dt
=

32G4µ2M3

5c5a5
(100)

Using Newton’s law of motion and gravitation, with the
relation in(86) and (87), the orbital kinetic energy of a binary
system is

Ek =
1
2
m1(ωa1)2 + m2(ωa2)2

=
1
2
ω2

[
m1

(m2a

M

)2

+ m2

(m1a

M

)2
]

=
1
2
ω2µa2 =

GMµ

2a
(101)

and the orbital potential energy is

U = −Gm1m2

a
= −GMµ

a
(102)

By summing (101) and (102), we obtain the total orbital energy

Eorb = −GMµ

2a
(103)

implying that

−dEorb

dt
= −GMµ

2a2

(
da

dt

)
(104)

which can be reduced to

1
a

da

dt
= − 1

Eorb

dEorb

dt
(105)

By substituting (100) and (103) into (105), we have

1
a

da

dt
= −64G3µM2

5c5

1
a4

(106)

which can be integrated to obtain

a4(t) = a4
0 −

(
256G3µM2

5c5

)
t = a4

0

(
1 − 256G3µM2

5c5a4
0

t

)

or

a(t) = a0

(
1 − t

tc

)1/4

wherea0 is the orbital separation att = 0, and

tc =
5c5a4

0

256G3µM2
(107)

which indicates the order of magnitude of the time the system
takes to merge, starting from a given distancea0.

By substituting (88) into (107), we have

ω(t) =

√
GM

a3
0(1 − t/tc)3/4

=
ω0

(1 − t/tc)3/8
(108)

8
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where

ω0 =

√
GM

a3
0

The GW frequencyν(t) is twice the orbital frequency, thus
can be be derived from (108) as

ν(t) =
ν0

(1 − t/tc)3/8
(109)

where

ν0 =
1
π

√
GM

a3
0

is the GW frequecy ata0.
From (98), the instantaneous amplitude of the GW can be

derived as

h0(t) =
4Gµa2ω2

zc4
=

4G2µM

zc4a

=
4G2µM

zc4

ω2/3(t)
(GM )1/3

=
4G5/3µM2/3

zc4
ω2/3(t)(110)

where the last three steps are derived by using (88) anda0 =
(GM/ω2)1/3. Define a chirp massMc as

Mc = (µ3M2)1/5 (111)

Then, (110) can be reduced to

h0(t) =
4π2/3G5/3M

5/3
c

zc4
ν2/3(t) (112)

Fig. 9. Simulated gravitational waveform of GW150914,z = 1, m1 =
m2 = 30M� anda0 = 900 km.

Fig.9 shows the simulated gravitational waveform of
GW150914. As the two bodies move closer, both the GW
frequency and amplitude increase.

From the relation in (88),a and da/dt can be represented
as

a =
(

GM

ω2

)1/3

da

dt
= −2

3
(GM )1/3ω−5/3

(
dω

dt

)
(113)

SincedEGW/dt = −dEorb/dt, by equating (99) and (104),
and then replacing all thea andda/dt with (113), we derive

dω

dt
=

96
5c5

ω11/3G5/3µM2/3

=
96ω11/3

5c5
(GMc)5/3

= c1f(m̃1, m̃2)

where

c1 =
96G5/3

5c5
ω11/3 = 8.67× 10−59ω11/3

f(m̃1, m̃2) =
m1m2

(m1 + m2)1/3

ω0 =

√
GM

a3

In general relativity, the field equations governing spacetime
curvature are nonlinear. Therefore, it is difficult to solve in a
closed form. Schwarzschild solution is an adequate approxi-
mation only when the mass of one star is overwhelming greater
than the mass of the other, such as a photon passing a star or a
planet orbiting its sun. In a binary star system, the metric for
the case of two comparable masses cannot be solved in closed
form, so we have to resort to approximation techniques such
as the post-Newtonian approximation or numerical approxi-
mations.

Fig. 10. The gravitational wave event GW150914 detected by LIGO Hanford
detector in the 35-350 Hz band (——–) and the reconstructed waveform by
numerical relativity (−− −) [2].

The GW150914 observation included eight gravitational-
wave cycles(about 0.2 second), covering the late inspiral,
merger, and ringdown phases of the binary. This late phase
of a BBH merger can be described accurately only by directly
solving the full equations of general relativity, because analytic
approximations fail near the time of merger [3]. In Fig.10,
the solid line shows the gravitational wave signal detected
by LIGO Hanford detector on September 14th, 2015, filtered
with a 35 - 350 Hz bandpass filter. The dash line shows a
reconstruction of waveform by numerical relativity.

According to general relativity, two masses orbiting one
another will emit gravitational wave, causing the orbits to
gradually lose energy, which will be transpoted away by
these waves. Unlike electromagnetic waves which can be
emitted by a dipole source, gravitational waves are emitted by

9
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quadrupoles at least. Thus, the gravitational field is a tensor
rather than vector field.
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APPENDIX I: GW LUMINOSITY

To study the energy-momentum tensor carried by GWs, we
must extend the approximation from (43) to [6]

gµν = g(0)
µν + hµν (114)

whereg
(0)
µν is the background (zero-order) Minkowski metric,

andhµν is the first-order perturbation associated with the GW.
Thus, the Ricci tensor can be represented as

Rµν = R(0)
µν (g(0)

µν ) + R(1)
µν (hµν) + R(2)

µν (hµνhλm)

The short-wave approximation assumes that the scale on
which hµν varies (d) are much smaller than the scale on
which g

(0)
µν varies (D). By introducing a length scaleS, with

D � S � d, the background effect is separated from the
perturbation. Next, define the average of a variableα, denoted
as〈α〉s, over a spatial volume of side lengthS. This averaging
scheme renders a physical quantity that varies on the scale of
d to zero, while that varies on the scale ofD to a constant.

The Einstein equation is represented as [4]

Rµν −
1
2
Rgµν =

8πG

c4
Tµν

The energy-momentum tensor of a GW reduces to

T (GW)
µν = − c4

8πG
〈R(2)

µν − 1
2
R(2)g(0)

µν 〉s (115)

whereT
(0)
µν = T

(1)
µν = 0 and T

(GW)
µν is of second order. The

Ricci tensor is defined as [4]

Rµν = Rλ
µλν

=

(
∂Γλ

µν

∂xλ
+ Γλ

mλΓm
µν

)
−

(
∂Γλ

µλ

∂xν
+ Γλ

mνΓm
µλ

)
(116)

with

Γλ
µν =

1
2
gλ`

(
∂g`ν

∂xµ
+

∂g`µ

∂xν
− ∂gµν

∂x`

)

=
1
2
gλ`(g`ν,µ + g`µ,ν − gµν,`) (117)

In the contravariant notation, the metric tensorg is repre-
sented as

gµν = gµν(0) + h̃µν (118)

Since

δµ
ν = gµλgλν =

(
gµλ(0) + h̃µλ

)(
g
(0)
λν + hλν

)

= δµ
ν + hµ

ν + h̃µ
ν

which implies that

h̃µ
ν = −hµ

ν (119)

which is multiplied withgνν on the both sides to derive

h̃µν = −hµν (120)

Next, by substituting (114), (118) and (120) into (117), the
Christoffel symbol can be expanded to different orders as

Γλ(0)
µν =

1
2
gλ`(0)

(
g
(0)
`ν,µ + g

(0)
`µ,ν − g

(0)
µν,`

)

Γλ(1)
µν = −1

2
hλ`
(
g
(0)
`ν,µ + g

(0)
`µ,ν − g

(0)
µν,`

)

+
1
2
gλ`(0) (h`ν,µ + h`µ,ν − hµν,`)

Γλ(2)
µν =

1
2
hλρh`

ρ

(
g
(0)
`ν,µ + g

(0)
`µ,ν − g

(0)
µν,`

)

−1
2
hλ` (h`ν,µ + h`µ,ν − hµν,`) (121)

Note that the comma in the subscript as in, ν indicates a partial
derivative with respect toxν. Similarly, the Ricci tensorRµν

in (116) can be expanded to different orders as

R(0)
µν =

1
2
gλ`(0)

(
g
(0)
`ν,µλ + g

(0)
µλ,`ν − g

(0)
`λ,µν − g

(0)
µν,`λ

)

R(1)
µν =

1
2
gλ`(0) (h`ν,µλ + hµλ,`ν − h`λ,µν − hµν,`λ)

−1
2
hλ`

(
g
(0)
`ν,µλ + g

(0)
µλ,`ν − g

(0)
`λ,µν − g

(0)
µν,`λ

)

R(2)
µν = −1

2
hλ` (h`ν,µλ + hµλ,`ν − h`λ,µν − hµν,`λ)

+
1
2
hλ`h`

ρ

(
g
(0)
`ν,µλ + g

(0)
µλ,`ν − g

(0)
`λ,µν − g

(0)
µν,`λ

)
(122)

The Ricci tensor in (116) can be rewritten as

Rµν =
1
2
gλ` (g`ν,µλ + gµλ,`ν − g`λ,µν − gµν,`λ)

+gλ`gmρ

(
Γm

µνΓρ
`λ − Γm

µλΓρ
ν`

)
(123)

Then, by substituting (121) into (123) and comparing with
(122), The second-order terms can be represented as

R(2)
µν = −1

2
hλ` (h`ν,µλ + hµλ,`ν − h`λ,µν − hµν,`λ)

+
1
4
gλ`(0)gmρ(0)

[(
hm

µ,ν + hm
ν,µ − h,m

µν

) (
hρ

λ,` + hρ
`,λ − h,ρ

`λ

)

−
(
hm

µ,λ + hm
λ,µ − h,m

µλ

)(
hρ

ν,` + hρ
`,ν − h,ρ

ν`

)]
(124)

The second trem on the right-hand side of (124) is further
reduced to

gλ`(0)gmρ(0)(h
ρ
λ,` + hρ

`,λ − h,ρ
`λ) = h`

m,` + hλ
m,λ − h,m = 0

10
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where the gauge condition in (44)

hλ
µ,λ − 1

2
h,µ = 0 (125)

is used. Thus, (124) is reduced to

R(2)
µν = −1

2
hλ` (h`ν,µλ + hµλ,`ν − h`λ,µν − hµν,`λ)

−1
4
gλ`(0)gmρ(0)

[(
hm

µ,λ + hm
λ,µ − h,m

µλ

)(
hρ

ν,` + hρ
`,ν − h,ρ

ν`

)]

= −1
2
hλ` (h`ν,µλ + hµλ,`ν − h`λ,µν − hµν,`λ)

−1
4
(
hm,`

µ + hm`
,µ − h`,m

µ

)
(hmν,` + h`m,ν − hν`,m) (126)

Then, the second-order Ricci scalar is calculated as

R(2) = gµν(0)R(2)
µν

= −1
2
hλ`

[
hµ

`,µλ + hν
λ,ν` −

(
∇2 − ∂2

c2∂t2

)
h`λ − h,`λ

]

−1
4
(
hmν,` + hm`,ν − h`ν,m

)
(hmν,` + hm`,ν − h`ν,m)

(127)

By substituting (126) into (127) and using the gauge condition
in (125),we derive

1
2
R(2)g(0)

µν = −1
4
g(0)

µν

(
∇2 − ∂2

c2∂t2

)
h

+
1
8
g(0)

µν (hmν,` + hm`,ν − h`ν,m)(hmν,` + hm`,ν − h`ν,m)

(128)

Then, by subtracting (126) with (128), we have

R(2)
µν − 1

2
R(2)g(0)

µν =
1
2

(
∇2 − ∂2

c2∂t2

)
h′

µν

−1
4
(hmν,` + hm`,ν − h`ν,m)(hmν,` + hm`

,µ − h`,m
µ )

+
1
8
(hmν,` + hm`,ν − h`ν,m)(hmν,` + hm`,ν − h`ν,m)

=
1
4
hm`,νhm`

,µ − 1
8
h,νh,ν (129)

where the last step is reduced by imposing the field equation(
∇2 − ∂2

c2∂t2

)
h′

µν = 0 andhµ0 = hµz = 0 from (79).

Finally, by substituting (129) into (115), the energy-
momentum tensor of GWs becomes

T00 =
c2

32πG

∑

αβ

(
dhTT

αβ

dt

)2

wherehTT
αβ is the transverce-traceless part ofhαβ, leading to

hµ0 = hµz = 0 in (79). Since the energy of the gravitational
field cannot be defined locally in general relativity, we need
to average over several wavelengths to find the GW-flux

dEGW

dtdS
= 〈cTµν〉 =

c3

32πG

〈∑

αβ

(
dhTT

αβ

dt

)2〉
(130)

By substitutinghkn in (94) into (130) and applying (84), we
have

dEGW

dtdS
=

G

8πc5r2

〈∑

αβ

(
d3qTT

αβ

dt3

)2〉

=
G

8πc5r2

〈∑

αβ

(
d3(Pmnαβqαβ)

dt3

)2
〉

(131)

Define the reduced quadrupole moment tensor as

Qαβ = qαβ − 1
3
δαβq

where qαβ is the quadrupole moment tensor in (74). Since
Qαβ is traceless by definition, we have

P`mαβQαβ = P`mαβqαβ (132)

Then, we can calculate the GW luminosityLGW from (131)
as

LGW ≡ dEGW

dt
=
∫

dEGW

dtdS
r2dΩ

=
G

2c5

1
4π

∫
dΩ

〈∑

αβ

(
d3(P`mαβQαβ)

dt3

)2
〉

(133)

By using the definition and properties ofPmnαβ in (82), (83),
and (85), we have

∑

αβ

(
d3(P`mαβQαβ)

dt3

)2

=
∑

αβ

d3(P`mαβQαβ)
dt3

d3(P`mγλQγλ)
dt3

=
∑

αβ

Pαβ`mP`mγλ
d3Qαβ

dt3
d3Qγλ

dt3
=
∑

αβ

Pαβγλ
d3Qαβ

dt3
d3Qγλ

dt3

=
[
(δαγ − nαnγ )(δβλ − nβnλ) − 1

2
(δαβ − nαnβ)(δγλ − nγnλ)

]

d3Qαβ

dt3
d3Qγλ

dt3
=
(

d3Qγβ

dt3

)2

− 2nαnγ
d3Qαλ

dt3
d3Qλγ

dt3

+
1
2
nαnβnγnλ

d3Qαβ

dt3
d3Qγλ

dt3

Then,LGW can be calculated by substitution in (133)

dEGW

dt
=

G

5c5

〈
3∑

α,β=1

d3Qαβ

dt3
d3Qαβ

dt3

〉
(134)

From (93), the tensorQαβ of a binary system can be
represented as

Qαβ =
µa2

2




cos 2ωt sin 2ωt 0

− sin 2ωt − cos 2ωt 0

0 0 0




Thus, the third time-derivative ofQαβ is

d3Qαβ

dt3
=

µa2

2
8ω3




sin 2ωt − cos 2ωt 0

− cos 2ωt − sin 2ωt 0

0 0 0




11
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which implies

3∑

α,β=1

d3Qαβ

dt3
d3Qαβ

dt3
= 32µ2a4ω6 (135)

Finally, by substituting (135) into (134), the rate at which
energy is carried away by GWs for a binary system is derived
as

dEGW

dt
=

32G

5c5
µ2a4ω6

which is the equation in (99).
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