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I. BASIC THEORIES

A. Minkowski Space

An infinitesimal physical displacementds̄ in a four-
dimensional space-time can be represented as

(ds)2 =
4∑

µ=1

4∑

ν=1

gµνdx
µdxν

where

gµν =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




(1)

is the metric in the Minkowski space.

Fig. 1. Tangent plane to a two-dimensional surface of arbitrary shape at the
position of the particle (q1 , q2).

Fig.1 shows a tangent plane of a point particle moving
without friction on a two-dimensional surface of arbitrary
shape. The generalized coordinates of the particle are(q1, q2),
andds̄ represents an infinitesimal displacement on the surface,
which can be written as

ds̄ =
2∑

α=1

ēαdq
α (2)

From (2), define ann-dimensional infinitesimal displace-
ment as

ds̄ =
n∑

α=1

ēαdq
α (3)

where (q1, · · ·qn) are the generalized coordinates andēα

is the directional vector tangent to theqα, which is not

normalized. A reciprocal basis{ēβ} is defined, which satisfies
the orthonormality condition that

ēα · ēβ =





1, α = β

0 α 6= β
(4)

The infinitesimal displacementds̄ can be represented as

ds̄ =
n∑

α=1

ēαdqα (5)

Next, by taking the inner product ofds̄ represented in (3)
with itself, we have

(ds)2 =
n∑

α=1

n∑

β=1

gαβdq
αdqβ (6)

where

gαβ = ēα · ēβ (7)

is called the covariant metric. Similarly, by taking the inner
product ofds̄ represented in (5) with itself, we have

(ds)2 =
n∑

α=1

n∑

β=1

gαβdqαdqβ (8)

where

gαβ = ēα · ēβ (9)

is called the contravariant metric.
From here on, the Einstein notation will be used to sim-

plify the derivations. Consider different curvilinear coordinates
(q1, q2) and (ξ1, ξ2), which are related to each other as

dξα = a′αβ dq
β

dqα = aα
βdq

β

or

a′αβ =
∂ξα

∂qβ

aα
β =

∂qα

∂ξβ

andds̄ can be represented either asēβdq
β or ε̄βdξ

β, leading
to

ēβdq
β = ε̄βdξ

β (10)

where Einstein notation has been used.
By taking the inner product of̄eα with (10), we obtain

aα
β = ēα · ε̄β
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By taking the inner product of̄εα with (10), we obtain

a′αβ = ε̄α · ēβ

Thus ε̄α and ēα can be derived as

ε̄α = (ε̄α · ēβ)ēβ = aβ
αēβ (11)

ēα = (ēα · ε̄β)ε̄β = a′βα ε̄β (12)

Any vector can be represented as

v̄ = vαēα = vβ ē
β (13)

The notion can be generalized to represent a second-rank
tensor as

¯̄T = Tαβ ēαēβ = Tαβ ē
αēβ (14)

where

Tαβ = gαα′gββ′Tα′β′

Similar to (13), a vector can be represented in two different
coordinates as

v̄ = vαēα = v′β ε̄β (15)

By substituting (11) into (15), we have

v̄ = vαēα = v′βaα
β ēα (16)

leading to

vα = aα
βv

′β (17)

Similarly, by interchanging the indices in (15), we have

v̄ = v′αε̄α = vβ ēβ (18)

By substituting the relation (12) into (18), we have

v̄ = v′αε̄α = vβa′αβ ε̄α (19)

leading to

v′α = a′αβ v
β (20)

Any second-rank tensor as (14) can be represented in two
different coordinates as

¯̄T = Tαβ ēαēβ = T ′`mε̄`ε̄m (21)

By substituting the relation in (11) into (21), we have

¯̄T = Tαβ ēαēβ = T ′`maα
` ēαa

β
m ēβ (22)

leading to

Tαβ = aα
` a

β
mT

′`m (23)

Similarly, by interchanging the indices in (21), we have

¯̄T = T ′αβε̄αε̄β = T `m ē`ēm (24)

By substituting the relation in (12) into (24), we have

¯̄T = T ′αβε̄αε̄β = T `ma′α` ε̄αa
′β
m ε̄β (25)

leading to

T ′αβ = a′α` a
′β
mT

`m (26)

Consider the two representations ofds̄ in n-dimensional
space, as in (3) and (5),

ds̄ = ēαdq
α = ēβdqβ (27)

Take the inner product of (27) tōeα and ēβ, respectively, and
use the definitions in (4), (7) and (9) to derive

dqα = gαβdqβ (28)

dqβ = gαβdq
α (29)

By substituting (29) into (28), we have

dqα = gα`g`βdq
β

which implies
(
gα`g`β − δα

β

)
dqβ = 0

Sincedqβs are linearly independent, implying that

gα`g`β = δα
β (30)

B. Particle Motion

Einstein’s theory of general relativity claims that the pres-
ence of mass can produce a curved four-dimensional space-
time such that the geodesics in this space-time reproduce
Newton’s second law and law of gravitation [1]

dv̄

dt
= −GMr̄

r3
(31)

in an appropriate limit. The particle motion involves only
kinetic energy, and no forces are exerted on the particle.
Thus, the Hamilton’s principle can be applied, leading to the
Lagrangian equation

d

dt

∂L

∂ (dq`/dt)
− ∂L

∂q`
= 0, ` = 1, 2 (32)

By substituting the lagrangianL = mv2/2 into (32), the
Lagrange’s equation in the generalized coordinates(q1, q2) is
derived as

g`β
d2qβ

dt2
+

1
2

(
∂g`γ

∂qβ
+
∂g`β

∂qγ
− ∂gβγ

∂q`

)
dqβ

dt

dqγ

dt
= 0 (33)

In geodesic motion, the minimum distance between two
points satisfies the Lagrange’s equation, and the path of the
particle is called a geodesic.

By multiplying gα` to (33), and imposing (30), we have

d2qα

dt2
+ Γα

βγ (q)
dqβ

dt

dqγ

dt
= 0 (34)

where

Γα
βγ(q) =

1
2
gα`(q)

[
∂g`γ(q)
∂qβ

+
∂g`β(q)
∂qγ

− ∂gβγ (q)
∂q`

]
(35)

Fig.2 shows the generalized coordinates and corresponding
basis vectors in a two-dimensional curved space. The change
in basis vectordēα can be characterized with the original basis
vectors as

dēα = Xγ
αβ ēγdq

β (36)

2
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Fig. 2. Changes of basis vectors from point(q1, q2) to point (q1 + dq1 ,
q2 + dq2) in a curved space.

By (3), we have

ēα =
∂s̄

∂qα

It follows that

∂ēα

∂qβ
=

∂2s̄

∂qβ∂qα
=

∂2s̄

∂qα∂qβ
=
∂ēβ

∂qα
(37)

By substituting (36) into (37), we have

Xγ
αβ ēγ = Xγ

βα ēγ (38)

which means the coefficientsXγ
αβ are symmetric in the lower

two indices.
Next, by taking the differential of (7) and applying (36), the

change in metric is derived as

dgαβ = ēα · dēβ + dēα · ēβ

= ēα ·Xγ
β` ēγdq

` + ēβ ·Xγ
α`ēγdq

`

=
(
Xγ

β`gαγ +Xγ
α`gαγgβγ

)
dq` (39)

Since the total differential ofgαβ can be represented in theq`

coordinates as

gαβ =
∂gαβ

∂q`
dq` (40)

By comparing (39) and (40), we have

∂gαβ

∂q`
= Xγ

β`gαγ +Xγ
α`gαγgβγ (41)

Due to the symmetric charateristic in (38), we find that

∂g`γ(q)
∂qβ

+
∂g`β(q)
∂qγ

− ∂gβγ(q)
∂q`

= 2Xα
βγg`α (42)

By multiplying gα`/2 to (42), then using the relations in
(30) and (35), we have

Xα
βγ =

1
2
gα`(q)

[
∂g`γ (q)
∂qβ

+
∂g`β(q)
∂qγ

− ∂gβγ (q)
∂q`

]

= Γα
βγ

Thus, (36) can be rewritten as

dēα = Γγ
αβ ēγdq

β (43)

Fig. 3. Parallel transport of a vector̄v around a closed curveL in a two-
dimensional curved space, starting from(q1, q2).

II. EINSTEIN FIELD EQUATION

A. Riemann Curvature Tensor

Fig.3 shows parallel transport of a vectorv̄ around a closed
curveL in a two-dimensional curved space, where the vector
components in the tangent plane are kept constant at all
points along the curve. Thus, the vectorv̄, represented in (13),
satisfies

dv̄ = dvαēα + vαdēα = 0 (44)

The generalized coordinatesqα alongL as

qα = qα
0 + εfα(τ ) (45)

fα(1) = fα(0) (46)

whereε is a small parameter andfα(τ ) is a scalar function
defined along the closed curveL.

Substituting (43) into (44), we have

dv̄ =
(
dvγ + vαΓγ

αβdq
β
)
ēγ = 0

which implies

dvγ = −vαΓγ
αβdq

β (47)

By using (45), (47) is reduced to

dvα(τ )
dτ

= −Γα
βγ (q)vβ(τ )ε

dfγ (τ )
dτ

(48)

Next, apply power series expansion ofΓα
βγ and v̄ alongL,

with the relation in (45), to have

Γα
βγ(q) ' Γα

βγ (q0) + εf`(τ )
∂Γα

βγ (q0)
∂q`

vα(τ ) ' vα
0 + εvα

1 (τ ) + ε2vα
2 (τ )

which are then substituted into (48) to obtain

ε
dvα

1 (τ )
dτ

+ ε2
dvα

2 (τ )
dτ

' −εdf
γ (τ )
dτ

[
Γα

βγ (0) + εf`(τ )
∂Γα

βγ (0)
∂q`

]
[vβ

0 + εvβ
1 (τ )]

where Γα
βγ (0) = Γα

βγ(τ = 0) = Γα
βγ(q0). By equating the

coefficients in the first-order (ε) terms, we have

vα
1 (τ ) = −Γα

βγ (0)vβ
0 f

γ (τ ) (49)

3



Final Report for Special Project, 2016 Spring, 2016 Fall & 2017 Spring, Department of Electrical Engineering, NTU

Similarly, by equating the coefficients in the second-order (ε2)
terms, we find

dvα
2 (τ )
dτ

= −
[
∂Γα

βγ (0)
∂q`

f`(τ )
dfγ(τ )
dτ

vβ
0

+Γα
βγ (0)vβ

1 (τ )
dfγ (τ )
dτ

]

= −
[
∂Γα

βγ (0)
∂q`

− Γα
mγ (0)Γm

β`(0)
]
vβ
0 f

`(τ )
dfγ (τ )
dτ

(50)

Before integrating (50) around L, we first perform the
following integration

∮

L

f` df
γ

dτ
dτ =

1
2

∮

L

[(
f` df

γ

dτ
− fγ df

`

dτ

)

+
d

dτ
(f`fγ )

]
dτ =

1
2

∮

L

(
f` df

γ

dτ
− fγ df

`

dτ

)

=
1

2ε2

∮

L

[
(q` − q`

0)
dqγ

dτ
− (qγ − qγ

0 )
dq`

dτ

]
dτ =

1
ε2
S`γ(51)

where

S`γ =
1
2

∮

L

(q`dqγ − qγdq`) = −Sγ` (52)

Define a Riemann curvature tensor as

Rα
β`γ =

[
∂Γα

βγ(0)
∂q`

− Γα
mγ (0)Γm

β`

]

−
[
∂Γα

β`(0)
∂qγ

− Γα
m`(0)Γm

βγ

]

=
(
∂Γα

βγ

∂q`
+ Γα

m`Γ
m
βγ

)
−

(
∂Γα

β`

∂qγ
+ Γα

mγΓm
β`

)
(53)

where the argument(0) is omitted because the reference point
q0 can be chosen arbitarily.

By using the antisymmetry ofS`γ in (52) andRα
β`γ in (53)

with respect to indicesγ and`, we have

Rα
β`γS

`γ =
1
2
(Rα

β`γS
`γ + Rα

βγ`S
γ`)

Finally, by integrating (50) over the closed loopL, we
obtain a non-zero second-order change inv̄ as

∆vα = vα
2 (1) − vα

2 (0) = − 1
2ε2

Rα
β`γv

β
0S

`γ

B. Energy-Momentum Tensor

The energy-momentum tensor is the source of the gravita-
tional field in the Einstein field equation, just as mass density
is the source of such a field in Newtonian gravity.

In four-dimensional space-time, a four-vector can be repre-
sented as in (13). Eqn.(6) is repeated as

(ds̄)2 = gµνdx
µdxν = dx̄ · dx̄− c2(dt)2 = −c2(dτ )2(54)

wheredxµ = dqµ and τ is called the proper time. Dividing
(54) by (dt)2 leads to

(
ds̄

dt

)2

=
(
dx̄

dt

)2

− c2 = v̄2 − c2 = −c2
(
dτ

dt

)2

Thus, time and proper time are related as

dτ

dt
=

√
1 − β2 (55)

with

β̄ =
v̄

c

Define the four-velocity as

uµ =
dxµ

dτ
=
dxµ

dt

dt

dτ
=

1√
1 − β2

[v̄, c] (56)

uµ = gµνu
ν =

1√
1 − β2

[v̄,−c] (57)

where (55) is used.
Consider an inertial frameF ′ which moves at a relative

velocity v̄ with respect toF . Thus, the origin ofF ′ is located
at a positionx̄0 in frame F . If the clocks are reset at the
first event where two origins coincide, and the second event
happens at the origin ofF ′, we can write

x̄ = v̄t+ ctē4 = 0̄ + ct′ε̄4

wherex̄ is the vector connecting the two events in space-time,
leading to

ε̄4 =
t

t′
(β̄ + ē4) (58)

The proper time is the time measured by an observer who
is moving with the frame. Thust′ = τ , and (55) is reduced to

ε̄4 =
β̄ + ē4√
1 − β2

(59)

If ē3 is along the direction of velocity, (59) becomes

ε̄4 =
βē3 + ē4√

1 − β2

Next, by imposing that̄ε3 · ε̄4 = 0 and ε̄3 · ε̄3 = 1, we derive

ε̄3 =
ē3 + βē4√

1 − β2

Thus, by using the relation in (11), the Lorentz transforma-
tion matrix is obtained as

aµ
ν =

1√
1 − β2




√
1 − β2 0 0 0

0
√

1 − β2 0 0

0 0 1 β

0 0 β 1




(60)

which is also labeled as

aµν = aµ
ν

By comparing (56) and (60), it is observed that

aµ4 =
1
c
uµ = a4µ =

1√
1 − β2

[β̄, 1] (61)

4
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C. Isotropic Fluid with No Shear Forces

In special relativity, a second-rank energy-momentum tensor
exists for an isotropic fluid with no shear forces, which can
be represented as

¯̄T = T µν ēµ ēν = T ′µν ε̄µε̄ν

where

T µν = aµ
µ′a

ν
ν′T ′µ′ν′

(62)

by applying (21) and (23), andT ′µν in the rest frame of fluid
can be represented as

T ′αβ = Pδαβ (63)

T ′44 = ρc2 (64)

whereT ′αβ in (63) indicates the spatial components of pres-
sure, andT ′44 in (64) is the proper energy density.

By substituting (63) and (64) into (62), we have

T µν = Paµ
ma

ν
m + ρc2aµ

4a
ν
4 (65)

From (60) and (61), we find

aµ
ma

ν
m = gµν +

1
c2
uµuν

=




1 0 0 0

0 1 0 0

0 0 1 + β2/(1 − β2) β/(1 − β2)

0 0 β/(1 − β2) −1 + 1/(1 − β2)




aµ
4a

ν
4 =

1
c2
uµuν

Thus, the energy-momentum tensor in (65) can be reduced to

T µν = Pgµν +
(
ρ +

P

c2

)
uµuν (66)

D. Field Equations

The Einstein tensorGµν is defined as

Gµν = Rµν − 1
2
Rgµν (67)

where

Rµν = Rλ
µλν (68)

is called the Ricci tensor, and

R = Rµ
µ = gµνRµν

is called the scalar curvature.
Similarly, a scalar can be defined from any tensor as

T = T µ
µ = gµνTµν (69)

Assume that the structure of space-time satisfies a field
equation

Gµν = κTµν (70)

whereκ is a constant to be determined. The tensors are both
symmetric and satisfy the energy-momentum conservation

∇µTµν = 0

Thus, we only have to check if it actually produces gravity as
we know it.

By multiplying gµν to the left-hand side of (70) and using
(67), we have

gµνGµν = gµν(Rµν − 1
2
Rgµν)

= R− 2R = −R

By multiplying gµν to the right-hand side of (70) and using
(69), we have

κgµνTµν = κT

Thus, (70) implies that

R = −κT (71)

By expressingGµν with (67) and replacingR with −κT
as in (71), the Einstein equation in (70) can be represented in
another form as

Rµν = κ

(
Tµν − 1

2
Tgµν

)
(72)

The gravitational field, following (31), is represented as

ḡ = −r̂GM
r2

(73)

Because gravitational field is conservative, it can be repre-
sented in terms of a gravitational potential fieldΦ as

ḡ = −∇Φ (74)

In the special case of a point mass,Φ can be expressed as

Φ = −GM
r

(75)

Next, apply the Gauss’s law to (73) over a sphereS of
radiusr to have ∮

S

ḡ · dā = −4πGM (76)

where dā is an infinitesimal surface onS. By applying the
divergence theorem, the left-hand side of (76) is reduced to

∮

S

ḡ · dS̄ =
∫

V

∇ · ḡdv (77)

The total massM is the volume integral of mass densityρ as

M =
∫

V

ρdv (78)

By substituting (77) and (78) into (76), we have

∇ · ḡ = −4πGρ (79)

Then, by substituting (74) into (79), we have

∇2Φ = 4πGρ (80)

In the weak-field limit, a perturbationhµν(x̄) is superim-
posed upon the flat Minkowski metricg0

µν in (1) as

gµν = g0
µν + hµν(x̄) (81)

5
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A particle follows the geodesic expressed in (34), namely,

d2xµ

dt2
+ Γµ

44c
2 = 0 (82)

where only the coordinatex4 = ct contributes to the second
term in (34).

Next, by substituting (81) into the affine connection in (35),
and assuminghµν(x̄) is independent of time, we have

Γµ
44 ' 1

2
[g0]µσ

[
∂hσ4(x̄)
∂ct

+
∂hσ4(x̄)
∂ct

− ∂h44(x̄)
∂xσ

]

= −1
2
[g0]µσ

[
∂h44(x̄)
∂xσ

]
(83)

whereµ, σ = 1, 2, 3.
By substituting (83) into (82) and imposing the Newton’s

law in (74), we have

d2x̄

dt2
= −∇̄Φ = ∇

[
c2

2
h44(x̄)

]

which implies

h44(x̄) = −2Φ
c2

(84)

From (81), we have

g44 = −1 + h44 (85)

In the Newtonian limit, the rest energyT44 = ρc2 is the
dominant term inTµν . Thus, neglecting the other terms in
(69), we have

T = g44T44 ' −T44 (86)

by neglecting the small perturbationh44.
Substituting (86) into (72), we have

R44 =
1
2
κT44 (87)

Then,R44 can be derived from the definition of Ricci tensor
in (68), which involves (53), as

R44 =
(
∂Γλ

44

∂xλ
+ Γλ

mλΓm
44

)
−

(
∂Γλ

4λ

∂x4
+ Γλ

m4Γ
m
4λ

)

=
∂Γλ

44

∂xλ
(88)

where the squared terms inΓ are neglected and the third term
vanishes in a static field

Next, substitute (83) into (88) to have

R44 = −1
2
∇2h44 (89)

By comparing (87) and (89), we obtain

∇2h44 = −κT44 (90)

In Newtonian physics, the mass densityρc2 is the only
source of gravity, thus the energy-momentum tensor in (63)
and (64) is reduced to

Tαβ = 0
T44 = ρc2 (91)

By substituting (84) into (80), we have

4πGρ = −c
2

2
∇2h44 (92)

Then, substitute (91) and (90) into (92) to have

κ =
8πG
c4

Thus, the Einstein’s field equation in (70) is reduced to

Gµν =
8πG
c4

T µν (93)

E. Uniform Universe

If the mass density is uniform throughout the universe, the
energy-momentum tensor takes the approximate form

T µν = ρuµuν

because the pressure contribution in (66) is negligible for the
entire universe. For a fluid at rest in the lab frame, the four-
velocity in (56) and (57) reduces to

uµ

c
= (0, 0, 0, 1)

uµ

c
= (0, 0, 0,−1)

uµuµ

c2
= −1

leading to

T = T µ
µ = gµνTµν = −ρc2

where (69) is applied.
Thus, the source term in the Einstein field equation (72)

becomes

Tµν − 1
2
Tgµν = ρc2

(
1
2
gµν +

uµuν

c2

)

III. G RAVITATIONAL PLANE WAVE

We start with cartesian coordinates(x1, x2, x3, ct) in a flat
Minkowski space and the Lorentz metric of (1). Suppose there
is a small distortion of the space so that this metric is changed
to

gµν = g0
µν + hµν

where g0
µν is the Minkowski metric, andhµν is a small

perturbation. The coordinatesqµ andxµ are assumed to differ
by h in first order

dqµ = dxµ + O(h)

The Ricci tensor defned in (68) is now represented as

Rµν =
∂

∂qλ
Γλ

µν − ∂

∂qν
Γλ

µλ +O(h2)

=
∂

∂qλ

{
1
2
gλρ
0

[
∂hρµ

∂qν
+
∂hρν

∂qµ
− ∂hµν

∂qρ

]}

− ∂

∂qν

{
1
2
gλρ
0

[
∂hρµ

∂qλ
+
∂hρλ

∂qµ
− ∂hµλ

∂qρ

]}
(94)

ThroughO(h), the metricg0 can raise indices onh, thus

gλρ
0 hρν = hλ

ν (95)

6
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ThenRµν in (94) becomes

Rµν = −1
2
gλρ
0

∂2

∂qλ∂qρ
hµν +

1
2

∂2

∂qλ∂qµ
hλ

ν

+
1
2

∂2

∂qν∂qρ
hρ

µ − 1
2

∂2

∂qν∂qµ
h (96)

We define a new tensorψ•ν
µ by

ψ•ν
µ = h•ν

µ − 1
2
hδ•ν

µ = ψν
µ (97)

With

∂

∂qµ
=

∂

∂xµ
+ O(h)

we find that

gλρ
0

∂2

∂qλ∂qρ
= gλρ

0

∂2

∂xλ∂xρ
= ∇2 − 1

c2
∂2

∂t2

Now, the ricci tensor in (96) can be rewritten as

Rµν = −1
2

(
∇2 − 1

c2
∂2

∂t2

)
hµν +

1
2

∂

∂xµ

∂

∂xλ
ψ•λ

ν

+
1
2
∂

∂xν

∂

∂xλ
ψ•λ

µ (98)

We could pick a corresponding set of generalized coordi-
nates in the deformed space so that the following auxiliary
condition is satisfied

∂

∂xλ
ψ•λ

ν = 0 (99)

whereν = 1,2,3,4. The Ricci tensor then takes the form
(
∇2 − 1

c2
∂2

∂t2

)
hµν = −2Rµν

In free space whereTµν = 0, the Einstein equation in (93)
reduced to the form of the wave equation for the metric

(
∇2 − 1

c2
∂2

∂t2

)
hµν = 0 (100)

Then we can find a solution for gravitational plane wave
propagating in the z-direction as

hmn = (h0)mne
ik(z−ct) (101)

where (m,n) = (x, y) and (h0)mn = constant, only the
spatial parts of the metric(hxx, hxy, hyy) are deformed, and
no modification of the z-coordinate and time t.

IV. SCHWARZSCHILD METRIC

We now consider the solution of Ricci tensor outside
a spherically symmetric mass distibution. Assume that the
metric is in the form

(ds)2 = A(dr)2 −B(cdt)2 + r2[(dθ2) + sin2θ(dφ)2](102)

whereA andB only depend onr. By the assumption in (102),
we first compute all theΓs with indicesr, θ, φ with (35).
Next, we compute all the Ricci tensors with indicesr, θ, φ

by substitutingΓs into the definition in (68) and (53). Finally,
we have

Rθθ = 1 − 1
A

+
r

2A

(
A′

A
− B′

B

)

Rφφ = Rθθ sin2 θ

Rrr = −B
′′

2B
+
B′

4B

(
A′

A
+
B′

B

)
+
A′

rA

R44 =
B′′

2A
− B′

4A

(
A′

A
+
B′

B

)
+
B′

rA
(103)

and all other terms are zero.
AssumingAB = λ = const, we have

d

dr
(AB) = A′B + AB′ = 0

Thus,

A′

A
+
B′

B
= 0 (104)

To satisfyRµν = 0, the four terms in (103) should be zero.
We substitute (104) into (103), leading to

Rθθ = 1 − 1
A

+
rA′

A2
= 0

Rφφ = Rθθ sin2 θ = 0

Rrr = −B
′′

2B
+
A′

rA
= 0

R44 =
B′′

2A
+
B′

rA
= 0 (105)

FromRθθ in (105), we observe that

1
A

− rA′

A2
=

d

dr

( r
A

)
= 1

Therefore, by applyingA = λ
B , we have

d(rB)
dr

= λ (106)

Next, using the relation in (104),Rrr in (105) is reduced to

−rB′′ − 2B′ = 0

which implies

d(r2B′)
dr

= 0 (107)

For a solution to (106), we take

rB = λ(r − k)

or

B = λ

(
1 − k

r

)
(108)

where k is a constant. Applying (108), we have

r2B′ = r2
(
λk

r2

)
= λk = const

which satisfies Eqn.(107).

7
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We define k = 2GM
c2 , and rescale the coordinatet →

t/
√

(λ). By substituting the value of k into (108) and using
A = λ

B , B andA are solved as

B = 1 − 2GM
c2r

A =
1

1 − (2GM/c2r)

Thus, the Schwarzschild metric in (102) can be rewritten as

(ds)2 =
1

1 − (2GM/c2r)
(dr)2 −

(
1 − 2GM

c2r

)
(cdt)2

+r2[(dθ2) + sin2 θ(dφ)2] (109)

Consider the Newnonian limit of the Schwarzschild metric.
For r → ∞ and c→ ∞, (109) is reduced to

(ds)2 ' (dx̄)2 −
(

1 − 2GM
c2r

)
(cdt)2 (110)

If we substitute the gravitational potential of the Newtonian
gravity in (75) into (84), we have

h44 =
2GM
c2r

Thus, by (85),

g44 = −(1 − 2GM
c2r

)

which reproduces the same result as the Schwarzschild metric
in the Newnonian limit in (110).

V. L INEAR PERTURBATION THEORY

To describe gravitational waves as linear perturbations on
a flat background spacetime, the metric components can be
approximated as [5]

gµν = ηµν + hµν +O(ε2) (111)

whereηµν represents the Minkowski metric,ε is the order of
magnitude ofhµν , which is much smaller than unity. Consider
a planar gravitational wave propagating in vacuum in thez
direction. The only components of metric perturbation which
might not vanish arehαβ, with α, β = 1, 2, whereα andβ
are used to index the two-dimensional coordinates transverse
to the propagation direction of the gravitational wave. Thus,
the 2 × 2 symmetric matrix{hαβ} depend only on the phase
coordinate

u =
ct− z√

2
(112)

and the first-order line element can be represented as

ds2 = −(cdt)2 + [δαβ + hαβ(u)]dxαdxβ + dz2 + O(ε2)
(113)

Assume that only the(x, y) dimensions of the metric are
deformed, and thez and ct dimensions are unaffected. Since
the spacetime metricgµν is symmetric, the perturbational
termshµν in the metric are assumed to be symmetric, namely,

hxy = hyx (114)

The Ricci tensor of a linearized gravitational wave takes the
form [1]

Rµν = −1
2

(
∇2 − 1

c2
∂2

∂t2

)
hµν +

1
2

∂

∂xµ

∂

∂xλ
ψ•λ

ν

+
1
2
∂

∂xν

∂

∂xλ
ψ•λ

µ (115)

whereψ•ν
µ is defined as

ψ•ν
µ = h•ν

µ − 1
2
hδ•ν

µ = ψν
µ (116)

with h = hxx + hyy, andψ•ν
µ satisfies the auxiliary condition

∂ψ•λ
µ

∂xλ
= 0 (117)

Eqn.(116) can thus be expressed as

ψ•x
x = hxx − 1

2
(hxx + hyy) =

1
2
(hxx − hyy)

ψ•y
x = hxy

ψ•y
y = hyy − 1

2
(hxx + hyy) =

1
2
(hyy − hxx)

ψ•z
z = ψ•4

4 = −1
2
(hxx + hyy)

and the terms ofψ•ν
µ with other combination ofµ andν are

zero. By imposing (117) withµ = 1, 2, 3 and 4, respectively,
we have

∂ψ•λ
x

∂xλ
=
∂ψ•x

x

∂x
+
∂ψ•y

x

∂y
= 0

∂ψ•λ
y

∂xλ
=
∂ψ•x

y

∂x
+
∂ψ•y

y

∂y
= 0

∂ψ•λ
z

∂xλ
=
∂ψ•z

z

∂z
= −

1
2
∂(hxx + hyy)

∂z
= 0

∂ψ•λ
4

∂xλ
=
∂ψ•4

4

∂(ct)
= −1

2
∂(hxx + hyy)

∂(ct)
= 0 (118)

Sincehαβ depends only onz andct, it is trivial that the first
two equations hold. The last two equations imply that

hxx + hyy = 0

or

hxx = −hyy (119)

By imposing (114) and (119),hαβ(u) in (113) can be repre-
sented as

hαβ(u) =



h+(u) h×(u)

h×(u) −h+(u)


 (120)

whereh+(u) and h×(u) characterize two different polariza-
tion states, withh+ called the plus polarization andh× the
cross polarization.

Under the auxiliary condition (117), the solution of (115)
can be represented as a plane wave propagating in thez-
direction as

hαβ = hαβ0f(u)

wheref(•) is an arbitrary waveform.

8
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The Rosen coordinates(u, v, x1, x2) can also be used to
describe non-perturbative optical observables in the presence
of a gravitational wave. The line element in Rosen coordinates
can be represented as

ds2 = −2dudv + γαβ(u)dxαdxβ (121)

where the relation with quasi-Cartesian coordinates is

ct =
1√
2
(v + u)

z =
1√
2
(v − u) (122)

which implies thatv = (ct + z)/
√

2. By substituting (122)
into (121), we obtain the exact line element

ds2 = −(cdt)2 + γαβ(u)dxαdxβ + dz2 (123)

By equating (123) to (113), we have

γαβ = δαβ + hαβ + O(ε2)

which takes the form of (111).

VI. D ETECTION OFGRAVITATIONAL WAVES

By substituting the matrixhαβ in (120) into (113), we have

ds2 = −(cdt)2 + [1 + h+(u)]dx2 + [1− h+(u)]dy2

+2h×(u)dxdy + dz2 (124)

Thus, a general gravitational plane wave propagating in the
z-direction can be represented as

hµν(t, z) =




0 0 0 0

0 h+(u) h×(u) 0

0 h×(u) −h+(u) 0

0 0 0 0




(125)

Consider two test masses placed at pointsA and B, re-
spectively. The initial coordinates of pointsA and B are
x̄i

A = (ct, 0, 0, 0) and x̄i
B = (ct, xB, yB, zB), respectively.

Consider a plus-polarized gravitational plane wave propagting
in the z-direction, which can be represented as

hµν(t, z) =




0 0 0 0

0 h+(u) 0 0

0 0 −h+(u) 0

0 0 0 0




(126)

with the corresponding line element

ds2 = −(cdt)2 + (1 + hxx)dx2 + (1 − hxx)dy2 + dz2

The proper distance between pointsA andB at fixed (z, ct)
can thus be calculated as

∆` =
√

∆s2 =
√

(1 + hxx)∆x2 + (1 − hxx)∆y2

(127)

If both pointsA and B lie on the x-axis, (127) atz = 0
becomes

∆`x =
√

1 + hxx(t, 0)∆x '
[
1 +

1
2
hxx(t, 0)

]
∆x(128)

which implies the change in distance between the two mirrors
is

∆`x − ∆x
∆x

=
1
2
hxx(t, 0) =

1
2
h+(ct)

which reveals the temporal waveform of the gravitational
wave.

Similarly, if both pointsA andB lie on they-axis, (127)
becomes

∆`y =
√

1 − hxx(t, 0)∆y '
[
1 − 1

2
hxx(t, 0)

]
∆y (129)

Therefore, the change in distance between the two test masses
is

∆`y − ∆y
∆y

= −1
2
hxx(t, 0) = −1

2
h+(ct)

Fig. 4. A test massM2 with a distancer0 from the test massM1 at the
origin and an angleφ from thex-axis.

Fig.4 shows a test massM2 with a distancer0 from the
test massM1 at the origin and an angleφ from the x-axis.
Thus, the relative coordinates ofM2 with respect toM1, can
be represented by using (128) and (129) as

x(t) =
[
1 +

1
2
hxx(t, 0)

]
r0 cosφ

y(t) =
[
1 − 1

2
hxx(t, 0)

]
r0 sinφ (130)

By eliminating thehxx(t, 0) terms in (130), we derive

x

r0 cos φ
+

y

r0 sinφ
= 2

which implies that the test massM2 moves around its initial
position along a straight line with a slope of− tanφ.

Consider multiple test masses forming a perfect circle with
radiusr0 on thexy-plane. By eliminating theφ terms in (130),
we obtain

x2

[a+(t)]2
+

y2

[b+(t)]2
= 1 (131)

9
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which is an ellipse with semi-axes

a+(t) =
[
1 +

1
2
hxx(t, 0)

]
r0

b+(t) =
[
1 − 1

2
hxx(t, 0)

]
r0

Whenhxx(t, 0) > 0, the circle of test masses will be stretched
in the x-direction and squeezed in they-direction. When
hxx(t, 0) < 0, the circle will be stretched in they-direction
and squeezed in thex-direction.

Next, consider a cross-polarization gravitational plane-wave
propagting in thez direction as

hµν(t, z) =




0 0 0 0

0 0 h×(u) 0

0 h×(u) 0 0

0 0 0 0




(132)

with the corresponding line element

ds2 = −(cdt)2 + dx2 + dy2 + 2hxydxdy + dz2

The proper distanced` between two test masses at a givenu
can be represented as

∆` =
√
ds2 =

√
∆x2 + ∆y2 + 2hxy∆x∆y (133)

which implies that the distance change inx direction is

∆`x =
√

∆x2 + hyx∆y∆x = ∆x

√
1 + hxy

∆y
∆x

' ∆x
(

1 +
1
2
hxy

∆y
∆x

)
= ∆x+

1
2
hxy∆y (134)

and the distance change in they direction is

∆`y =
√

∆y2 + hxy∆x∆y = ∆y

√
1 + hxy

∆x
∆y

' ∆y
(

1 +
1
2
hxy

∆x
∆y

)
= ∆y +

1
2
hxy∆x (135)

If a test mass is placed with a distancer0 from the origin
and an angleφ from the x axis, then its coordinates can be
determined by using (134) and (135) as

x(t) = r0

[
cosφ+

1
2

sinφhxy(t, 0)
]

y(t) = r0

[
sinφ+

1
2

cosφhxy(t, 0)
]

(136)

By rotating thexy plane around thez axis by45◦, anx′y′

coordinate system is formed as


x′

y′


 =




cos 45◦ sin 45◦

− sin 45◦ cos 45◦






x

y




=
1√
2




1 1

−1 1






x

y




or

x′(t) =
1√
2
r0(sinφ+ cos φ)

[
1 +

1
2
hxy(t, 0)

]

y′(t) =
1√
2
r0(sinφ− cos φ)

[
1 − 1

2
hxy(t, 0)

]
(137)

By eliminating theφ terms in (137), we derive

x′2

[a×(t)]2
+

y′2

[b×(t)]2
= 1 (138)

which is an ellipse with semi-axes

a×(t) =
[
1 +

1
2
hxy(t, 0)

]
r0

b×(t) =
[
1 − 1

2
hxy(t, 0)

]
r0

Fig. 5. Elliptical deformations caused byh+(t) andh×(t), respectively.

Thus, both plus polarizations and cross polarizations give
rise to elliptical deformation in the distribution of test masses,
and the elliptical deformation caused by cross polarization is
rotated byπ/4 to that of the plus polarizaton.

A. LIGO

Fig. 6. Coordinates(x′, y′, z′) for incident gravitational wave and(x, y, z)
for LIGO instrument.

Fig.6 shows the coordinates(x′, y′, z′) for incident grav-
itational wave and(x, y, z) for LIGO instrument. The grav-
itational wave is assumed to propagate along thez′ axis,
which can be characterized by(θ, φ). The coordinate system
(x′, y′, z′) can be derived by rotating the coordinate system
(x, y, z) by φ about thez-axis, and then byθ about thex-axis

10
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to have


x′

y′

z′




=




1 0 0

0 cos θ sin θ

0 − sin θ cos θ







cos φ sinφ 0

− sinφ cos φ 0

0 0 1







x

y

z




=




cos φ sinφ 0

− cos θ sinφ cos θ cos φ sin θ

sin θ sinφ − sin θ cosφ cos θ







x

y

z




(139)

Fig.7 shows the configuration of the Advanced LIGO detector

Fig. 7. Configuration of LIGO’s interferometer [9].

[9], which is a modified Michelson interferometer designed
to measure gravitational wave strain. A coordinate system
(ct, x, y, z) is defined, with the two orthogonal arm of the
LIGO aligned along thex and y axes, respectively. The
separation between mirrorsM1 andM2 is ∆x = L = 4 km,
that between mirrorsM3 andM4 is ∆y = L = 4 km. The
gravitational-wave strain is measured as the difference between
∆`x and∆`y as [10]

h(t) =
∆`x − ∆`y

L
(140)

By the definition in (140), we assume a tensor format for
the combined response of the two arms of LIGO as [11]

h(t) =
1
2
hµνA

µν (141)

wherehµν is the gravitational wave measured in the LIGO’s
coordinates, and

Aµν =




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0




(142)

indicates the components ofhµν measured by the LIGO
instrument, namely,(∆`x − ∆`y)/L.

Consider a special case that(x′, y′, z′) = (x, y, z), and the
gravitational wave is incident inz direction. By substituting
(126) into (141), we have

h(t) =
1
2
(hxxA

xx + hyyA
yy) = h+(u) (143)

Also, by substituting (128) and (129) into (140), we have

h(t) =
(1 + hxx/2)L− (1 − hxx/2)L

L
= h+(u)

which is the same result as (143).
Let ū and v̄ in the (ct, x, y, z) coordinate system be repre-

sented as̄u′ and v̄′, respectively, in the(ct′, x′, y′, z′) coor-
dinate system. If̄u (ū′) is related tov̄ (v̄′) in the (ct, x, y, z)
((ct′, x′, y′, z′)) coordinate system, as

ū = ¯̄h · v̄ (144)

ū′ = ¯̄h
′
· v̄′ (145)

where¯̄h and ¯̄h
′

are the perturbation tensors in the(ct, x, y, z)
and the(ct′, x′, y′, z′) coordinate systems, respectively.

If the (ct, x, y, z) and the(ct′, x′, y′, z′) coordinate systems
are related by the rotation in (139), we have

ū′ = ¯̄R · ū (146)

v̄′ = ¯̄R · v̄ (147)

where

¯̄R =




1 0 0 0

0 cosφ sinφ 0

0 − cos θ sinφ cos θ cosφ sin θ

0 sin θ sinφ − sin θ cos φ cos θ




(148)

is the rotation matrix derived in (139), with an additional
time coordinate. By substituting (144) into (146), and then
subtituting (147) into (145), we have

ū′ = ¯̄R · ū = ¯̄R · ¯̄h · v̄ = ¯̄h
′
· ¯̄R · v̄ (149)

which implies

¯̄h = ¯̄R
−1

· ¯̄h
′
· ¯̄R (150)

A gravitational wave (GW) with plus polarization propagat-
ing in the z′ direction is characterized as

¯̄h
′
=




0 0 0 0

0 h+(u) 0 0

0 0 −h+(u) 0

0 0 0 0




(151)

11
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which can be transformed into the(ct, x, y, z) coordinate
system by substituting (148) and (151) into (150) to have

¯̄h = h+(u)




0 0

0 cos2 φ− cos2 θ sin2 φ

0 (1 + cos2 θ) sin φ cosφ

0 sin θ cos θ sinφ
0 0

(1 + cos2 θ) sinφ cosφ sin θ cos θ sinφ

sin2 φ− cos2 θ cos2 φ − sin θ cos θ cos φ

− sin θ cos θ cos φ − sin2 θ




(152)

Then, the LIGO response to the plus-polarized GW is obtained
by substituting (152) into (141) to have

h(t) =
1
2
h+(u)(1 + cos2 θ) cos 2φ (153)

Similarly, a GW with cross polarization propagating in the
z′ direction is characterized as

¯̄h
′
=




0 0 0 0

0 0 h×(u) 0

0 h×(u) 0 0

0 0 0 0




(154)

By substituting (148) and (154) into (150), we derive

¯̄h = h×(u)




0 0 0 0

0 − cos θ sin 2φ cos θ cos 2φ cosφ sin θ

0 cos θ cos 2φ cos θ sin 2φ sinφ sin θ

0 sin θ cosφ sin θ sinφ 0




(155)

which is substituted into (141) to obtain the LIGO response
to a cross-polarized GW as

h(t) = −h×(u) cos θ sin 2φ (156)

B. Source Localization

The first gravitational wave detection GW150914 was de-
tected by the two LIGO detectors, one in Livingston, Louisiana
and the other in Hanford, Washington. For two detectors
at different locations, if we assume that the difference in
travel time between sites is due only to the direction of the
gravitational wave source, then the angle between the source
and the detectors baseline can be estimated as

θ = cos−1
(cτ
d

)
(157)

where τ is the time delay, andd is the distance between
two detectors. The relation in (157) thus constrains the source
direction to a ring on the sky. When the arrival time estimates
are affected by noise, we can use the Maximum Likelihood
Estimator as

θ̂ =





π, τ < −d/c

cos−1(cτ/d), −d/c ≤ τ ≤ d/c

0, τ > d/c

(158)

Fig. 8. Illustration of the relation between GW source and detectors baseline
in (157), and the coordinate system with positions of three detectors on the
y − z plane.

Fig. 8 illustrates the relation between GW source and
detectors baseline in (157), and shows a coordinate system
with positions of three detectors on they − z plane.

Assume that the distribution of measured arrival times for a
given source follows a gaussain distribution with mean equal
to the true arrival time and variance equal to the variance of
the arrival time estimate. Define the systematic bias as

Bθ̂ =< θ̂ > −θ (159)

where< θ̂ > is the expectation value of the estimator in (158),
and θ is the true angle between the source and the detectors
baseline.

Fig. 9. Angular bias for the Livingston-Hanford (L1-H1) baseline when
assuming a gaussian arrival time error distribution withσ = 1 ms (———)
andσ = 0.1 ms (−− −), respectively.

Fig. 9 shows the angular bias defined in (159) for the
Livingston-Hanford (L1-H1) baseline when assuming a gaus-
sian arrival time error distribution withσ = 1 ms andσ = 0.1
ms, respectively. We apply twenty thousand sets of arrival
times with simulated errors from different sky positions, snd
use the distance of the Livingston-Hanford (L1-H1) baseline,
whered/c = 10 ms.
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