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I. BASIC THEORIES normalized. A reciprocal basig”} is defined, which satisfies
A. Minkowski Space the orthonormality condition that
1, a=/

An infinitesimal physical displacemends in a four-

_ﬁ o
dimensional space-time can be represented as €a € (4)
0 a#
4 4
_ Z Z G datdz” The infinitesimal displacements can be represented as
pu=1lv=1 n
ds = e*dqe, 5
where 8 ; © ®)
1.0 0 0 ] Next, by taking the inner product afs represented in (3)
with itself, we have
01 0 O n n
Juv = (1) (ds)® = Z Z Japdq®dg” (6)
001 0 o !
00 0 —1 where
is the metric in the Minkowski space. YaB = €a € @)

is called the covariant metric. Similarly, by taking the inner
product ofds represented in (5) with itself, we have

(ds)* = g*%dqadyp (8)
a=1 =1
where
g’ =e* -’ 9)

is called the contravariant metric.

From here on, the Einstein notation will be used to sim-
Fig. 1. Tangent plane to a two dimensional surface of arbitrary shape at ﬂgfy the derivations. Consider different curvilinear coordinates
position of the particleq’, ¢). (¢!, ¢%) and (¢, £2%), which are related to each other as

o Jag,
Fig.1 shows a tangent plane of a point particle moving de™ = aj5'dq

without friction on a two-dimensional surface of arbitrary dg* = agdq
shape. The generalized coordinates of the particlé#re?),
andds represents an infinitesimal displacement on the surface,

which can be written as g - 98
B 3qﬁ
2
ds =Y eadq® ) af = 9q*
a=1 85[3
From (2), define am-dimensional infinitesimal displace-andds can be represented either aglg” or £5d¢”, leading
ment as to
n epdq® = 5deP (10)
ds =3 eadq” 3) g g
a=1 where Einstein notation has been used.

By taking the inner product of* with (10), we obtain
where (¢',---q") are the generalized coordinates aag y g P (10)

is the directional vector tangent to thg,, which is not ag =e" - &g
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By taking the inner product of* with (10), we obtain Consider the two representations @f in n-dimensional

o o space, as in3) and 6),

a/ﬁ =& - 6[3
- _ = o _ﬁ

Thusz, andé, can be derived as ds = €adq” = e"dqs (27)

Take the inner product of (27) t&" andeg, respectively, and

5, = (6, - %)es = d’é ner prod :
fa = (Ba - ") = aa?y (11) use the definitions in (4), (7) and (9) to derive
o= (€a-8")eg =allzs (12)
Any vector can be represented as dq” = g*"dqs (28)
5 dgs = gapdq” (29)
U= 1" = vpe 13 - _
rere e (13) By substituting 29) into (28), we have
The notion can be generalized to represent a second-rank o of 5
tensor as dq® = g™ gepdq
]:—' = To‘ﬁéaéﬁ — Taﬁéaéﬁ (14) which implies
where (9% ges — 05) dg” =0

Top = gaa/gﬁﬁ/T‘l/ﬁ/ Sincedq’s are linearly independent, implying that

. . . 14
Similar to (13), a vector can be represented in two different 9% 93 = 03 (30)
coordinates as
=1, = 1P, (15) B. Particle Motion
Einstein’s theory of general relativity claims that the pres-

By substituting (1) into (15), we have ence of mass can produce a curved four-dimensional space-

7 = v%e, :v/ﬁagéa (16) time such that the geodesics in this space-time reproduce
Newton’s second law and law of gravitation [1]
leading to _ _
dv  GMr 31
v = agv/ﬁ a7) dat — 3 (31)
Similarly, by interchanging the indices in%), we have in an appropriate limit. The particle motion involves only
kinetic energy, and no forces are exerted on the particle.
v =1, =v¢g (18) Thus, the Hamilton’s principle can be applied, leading to the
By substituting the relation1@) into (18), we have Lagrangian equation
d oL oL
5y — /a_:ﬁ/a_ _—— = =1.2 32
v =1"", = vag'e, (19) 0B (dg /Al O 0, £=1, (32)
leading to By substituting the lagrangiah = mwv?/2 into (32), the
Ve — aglvﬁ (20) Lagrange’s equation in the generalized coordingtésq?) is

derived as

a*¢° 4 109y | Oges _ O9py dq” dq”
TP dq® O dqt ) dt dt
In geodesic motion, the minimum distance between two

By substituting the relation in1(l) into (21), we have points satisfies the Lagrange’s equation, and the path of the
particle is called a geodesic.

Any second-rank tensor ag4) can be represented in two
different coordinates as

—0(33)
T = Tqe5 = T'""46m (21)

T __mafs 5 _ midm oas B = i . ) )
T'=T"¢exep =T ""ayCatnes (22) By multiplying ¢ to (33), and imposing %0), we have
leading to d2q* . (q)ﬁdi 0 (34)
TP = agal T/ (23) a2 P A dt
Similarly, by interchanging the indices 1), we have where
= , P e ( )7 1 af( ) 8957((]) + 895[3((]) 89[37((]) (35)
T =T"Pz,65 = T eréy, (24) s\ =59\ 0q° a0t
By substituting the relation in1@) into (24), we have Fig.2 shows the generalized coordinates and corresponding
F _ qrafs = _pbm oz 18 basis vectors in a two-dimensional curved space. The change
T =T""eaes =T a; Caty&p (25) in basis vectorie, can be characterized with the original basis
leading to vectors as
T = afa/ ST (26) deo = X] ze,dg” (36)
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Fig. 2.
¢® + dg?) in a curved space.

By (3), we have

o
oq~

€a =

It follows that
b _ 05 _ s _on
0¢%  0¢P0q>  0q20q¢P  Og“

By substituting (36) into (37), we have

X(Zﬁé'y = X’Yaé'y

which means the coefficients ) ; are symmetric in the lower

two indices.

Changes of basis vectors from paift(¢2) to point @' + dq’,

(37)

(38)

Fig. 3. Parallel transport of a vectoraround a closed curvé in a two-
dimensional curved space, starting frgat, ¢2).

II. EINSTEIN FIELD EQUATION
A. Riemann Curvature Tensor

Fig.3 shows parallel transport of a vectoaround a closed
curve L in a two-dimensional curved space, where the vector
components in the tangent plane are kept constant at all
points along the curve. Thus, the vectorepresented in (13),
satisfies

dv = dv®eé, +v%dé, =0 (44)
The generalized coordinate$ along L as

q* = qg +ef*(7) (45)
fe(1) = f*(0) (46)

Next, by taking the differential of (7) and applying (36), the

change in metric is derived as

dgaﬁ =€y déﬁ +de, - €s
= o X}&ydg" + 25 - X6y dg"

= (X’Yega'y + Xgegavgﬁ'y) dg*

(39)

Since the total differential of,,s can be represented in tgé

coordinates as

9908 ; 4
gap = dq
af 8(]@

By comparing (39) and (40), we have

agag
Oq*

= Xgega'y + X 09ar 98y

(40)

(41)

Due to the symmetric charateristic in (38), we find that

990+(q) + 9905(q) _ 998+(q)
0qP oq” dqt

By multiplying g.¢/2 to (42), then using the relations in

(30) and (35), we have

= 2X§’Y Jra

9ge8(q)  99p+(q)

l af(q) 895’)’((]) +

Xg =
by = 29 OqP oq

=I5,
Thus, (36) can be rewritten as

déo =T7 ﬁé,ydqﬁ

Oqt

(42)

(43)

wheree is a small parameter anff*(7) is a scalar function
defined along the closed cunie
Substituting (43) into (44), we have

4o = (dm + vaflﬁdqﬁ) &, =0
which implies
dv? = —v°T7 5dg” (47)
By using (45), (47) is reduced to

W _ g @@L )

Next, apply power series expansionlof, andv along L,
with the relation in (45), to have

or«
T8y(0) = T (20) + wa%

v¥(1) ~vf + evf (1) + 6205‘ (1)

which are then substituted into (48) to obtain

D) (o)
dr dr
df (1 arg. (o
~ —¢ fd7(- ) s, (0) + eff(r) g;e( ) [vg + evf(T)]

Wher_e_ng(O_) = Fgﬁ(f = 0) = I'g, (q0)- By equating the
coefficients in the first-order) terms, we have

Vi (1) = ~T3,(0)0) 7 (7) (49)
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Similarly, by equating the coefficients in the second-ordé&y ( Thus, time and proper time are related as

terms, we find dr
ra — =1-p5 55
d’02 '3, f'Y(T) f dt p (55)
8 dr with
415, (00 () (>] 5ol
&
org ( ) df (r ' g .
[ — T2 (0) ZZ(O)] vgff(r) fdi ) (50) Define the four-velocity as
#7dx“7d:c“dt7 1 B 56
Befpre _mtegrajung {0) around L, we first perform the e T 7@ [0, ] (56)
following integration 1

Uy = guu’ = ———=10, —¢] (57)
frutf (- -rE) L
) where §5) is used.
+—(fgf7)] dr — j{ (fg df _ f” df ) Consider an inertial frameé®’ which moves at a relative
dr velocity v with respect toF'. Thus, the origin ofF” is located
1 dq” at a positionz, in frame F'. If the clocks are reset at the
=55 ¢ | —a)—— (@ —aq)——|dr = 557(51) : igins coinci
2¢2 J, 0 g 0 d first event where two origins coincide, and the second event
happens at the origin of’, we can write

where
1 T = vt +ctes =0+ ct'éy
S =5 § Wda" — gy = -5 (2)
2L wherez is the vector connecting the two events in space-time,
Define a Riemann curvature tensor as leading to
ore_(0) _ b, =
le% _ By [e% m = — 58
R[M’y - |: 8(]@ - Fmry (O) ﬁfj| €4 t (6 + 64) ( )
arg,(0) N . The proper time is the time measured by an observer who
- [ 0 I'7.0(0) m] is moving with the frame. Thug = 7, and 65) is reduced to
arg arg 3¢
_ By « m B a m - 6"‘64
= (G ) - (G Tt 69 e (59

where the argumeniD) is omitted because the reference poinf ¢; is along the direction of velocity, (59) becomes
qo can be chosen arbitarily.

By using the antisymmetry o7 in (52) andRg,., in (53) g4 = fes + e
with respect to indices and/, we have V1-p2
1 Next, by imposing thats - £, = 0 andés - €3 = 1, we derive
RgE’YSE'y _ _(Rgf Sf'y + Rg ES'M) y p g 3°¢4 3°¢3
20 ! & + féy
Finally, by integrating §0) over the closed loopl, we &= /1= 32

obtain a non-zero second-order change ias ) o
Thus, by using the relation in (), the Lorentz transforma-

Av® = 0§ (1) — v$(0) = —LR?}L@V’U[}S&Y tion matrix is obtained as

IRVAGE 0 0 0]
) 0 VI—-3 0 0

B. Energy-Momentum Tensor

The energy-momentum tensor is the source of the gravita- at = 60)
tional field in the Einstein field equation, just as mass density V1-p5? 0 0 1 8
is the source of such a field in Newtonian gravity.

In four-dimensional space-time, a four-vector can be repre- 0 0 8 1

sented as in (13). Eqre) is repeated as
which is also labeled as
(d3)? = gudatdr” = dz - dz — *(dt)? = —c*(dr)*(54)

Ay = Oy
wheredz* = dg* and 7 is called the proper time. Dividing .
(54) by (dt)? leads to By comparing {6) and (60), it is observed that

1 1

(@) = (@) ~o=veee(G) = g == O
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C. Isotropic Fluid with No Shear Forces wherex is a constant to be determined. The tensors are both

In special relativity, a second-rank energy-momentum tensdfMmetric and satisfy the energy-momentum conservation

exists for an isotropic fluid with no shear forces, which can VAT, =0

be represented as o )
Thus, we only have to check if it actually produces gravity as

T =T"e,e, =T"e, 8, we know it.
By multiplying ¢ to the left-hand side of (70) and using

where (67), we have

™ = a",a’, T 62 , , 1
w ( ) gu G;w — g“ (R;w _ 539#1/)
by applying (21) and (23), an@’*" in the rest frame of fluid —R-2R— -R

can be represented as
By multiplying ¢# to the right-hand side of (70) and using

1'% = P§*’ (63) (69), we have
T p02 (64) /’»g‘“’TW — kT
where T’ in (63) indicates the spatial components of PreSrhus, (70) implies that
sure, andl’** in (64) is the proper energy density.
By substituting (63) and (64) inta6Q), we have R=—kT (71)
(65) By expressingG,,, with (67) and replacingk with —xT'

T = Pa* a¥. + pcatal ; ! . S .
mfm T PE as in (71), the Einstein equation in (70) can be represented in

From (60) and (61), we find another form as
1 1
at a’ = g" + C_Quuuu R, =k (T;w - §Tg#,,) (72)
10 0 0 | The gravitational field, following (31), is represented as
M
0 1 0 0 = —fG 5 (73)
_ T
0 0 1+p%/(1-p?) B/(1 — 32 Becaus_e gravitational flel_d is conservat_we,_ it can be repre-
sented in terms of a gravitational potential figkdas
00 B/A-B) 11/ j— -V (74)
1
ayay = C—QU“U” In the special case of a point mads.can be expressed as
Thus, the energy-momentum tensor in (65) can be reduced to P = _GM (75)
,
TH = Pghv + (p+ 5;) uta” (66) Next, apply the Gauss’s law to (73) over a sphéteof
¢ radiusr to have
D. Field Equations %SQ 43 = —dnGM (76)
The Einstein tensoG* is defined as where da is an infinitesimal surface o. By applying the
1 divergence theorem, the left-hand side of (76) is reduced to
G,uu = R,uu - _Rg,uu (67)
2 _
g-dS= [ V-gd 77
where jig /v gdv (77)
Ry = Rl);)\y (68) The total masg\/ is the volume integral of mass densjyas
is called the Ricci tensor, and M = /Vpdv (78)
R=Rl =g¢"" R By substituting (77) and (78) into (76), we have
is called the scalar curvature. V.-g=—-4nGp (79)
Similarly, a scalar can be defined from any tensor as Then, by substituting (74) into (79), we have
T=T=g"Tw (69) V20 = 4nGp (80)
Assume that the structure of space-time satisfies a fieldin the weak-field limit, a perturbatioh,,, (z) is superim-
equation posed upon the flat Minkowski metr%u in (1) as
G = KTy (70) Guv = Gy + Py (Z) (81)
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A particle follows the geodesic expressed in (34), namely, By substituting (84) into (80), we have

d2xH c?
—d; +TH,2 =0 (82) AnGp = =5V has (92)
where only the coordinate? = ¢t contributes to the second Then, substitute (91) and (90) into (92) to have
term in (34). o 8rG
Next, by substituting (81) into the affine connection in (35), A
and assumingy,., (%) is independent of time, we have Thus, the Einstein’s field equation in (70) is reduced to
1 Ohgy (SE) Ohgy (SE) Ohys (SE) G
It ~ —[g%"° - GH = Vi 93
T2 o] [ oct + oct Ox° ct (93)
1 Ohay(T ) .
- _5[90]#“ [ 844556)} (83) E. Uniform Universe
xr
If the mass density is uniform throughout the universe, the
where ., o - 13 2,3. _ _ ) energy-momentum tensor takes the approximate form
By substituting (83) into (82) and imposing the Newton'’s
law in (74), we have ™ = putu”
A%z _ c? - because the pressure contribution @i6)(is negligible for the
a2 -ve=V [§h44(x)] entire universe. For a fluid at rest in the lab frame, the four-

L velocity in (56) and 67) reduces to
which implies u
u

2P - = (0707051)
h44(f) =—— (84) uc
¢ £ = (050707_1)
From (81), we have Cﬂ
u u# _ _1
gas = —1 + hyy (85) c?

In the Newtonian limit, the rest energ¥yy = pc? is the leading to

dominant term inZ,,. Thus, neglecting the other terms in T=T!=g"T,, = —pc?

69), h i i
(69), we have where (69) is applied.

T = ¢"Ty ~ —Tyy (86) Thus, the source term in the Einstein field equation (72)
) ) becomes
by neglecting the small perturbatidr,. 1 1 .
Substituting (86) into (72), we have Ty — §Tg‘“’ = pc? (59#1/ T ;;2 u)
1
Fag = 5rlaa (87) I1l. GRAVITATIONAL PLANE WAVE
Then, R44 can be derived from the definition of Ricci tensor We start with cartesian coordinatés®, 22, 23, ct) in a flat
in (68), which involves (53), as Minkowski space and the Lorentz metric df)(Suppose there
oT oT is a small distortion of the space so that this metric is changed
Rys = ( 441 AFZZ) - ( = +F’\4F§ﬁ\) to
Ox? m Ox? m
- &y (88) Gy = G+ Py
- oz where g?w is the Minkowski metric, andh,, is a small
where the squared terms Ihare neglected and the third termperturbation. The coordinate$ andz* are assumed to differ
vanishes in a static field by & in first order

Next, substitute (83) into (88) to have dg" = da* + O(h)

1
Ryy = —§V2h44 (89) The Ricci tensor defned ir6§) is now represented as
i i 9 A 9 A 2
By comparing (87) and (89), we obtain R, = 8—qAF‘“’ _ 8—(]'/F‘u)\ +0(h?)
V2hay = —KTu4 (90) 0 { 1 P [8hp# N Ohp, 8h#,,]}
= A g
In Newtonian physics, the mass densijty? is the only dg* |2 dq dgt dg°
source of gravity, thus the energy-momentum tensor in (63) 0 lgxp Oy, n Ohpx Oy (94)
and (64) is reduced to dgv 127° | a¢* ' ogr  dgr
Tos =0 ThroughO(h), the metricgy can raise indices oh, thus
Tys = pc (91) 9" how = B3 (99)
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Then R, in (94) becomes by substitutingl's into the definition in (68) and (53). Finally,

) 92 > we have
= ——g)———h ")
By 990 dqrOqr W+28q>‘8ql‘ v Reezl—l—l-L (£_2/>
1 82 ) 1 82 A 2A A B
TS ogar T 2000 (99) Ry = Rggsin® 0
) o B B// B/ A/ B/ A/
We define a new tensas;,” by R = 58 + 1B (Z + E) + a
1 B// B/ A/ B/ B/
.V:I’L.V——I’L(S.V: v 97 - _ = - - - 103
7/)# i 9 n 7/)# ( ) R44 24 4A(A+B)+TA ( )
With and all other terms are zero.
0 0 +om) AssumingAB = X = const, we have
ogr OxH d
we find that E(AB) =AB+AB =0
N P P, 19 Thus,
Jo o 0gr 90" groer c2 Ot? A B
Now, the ricci tensor ing6) can be rewritten as ATB " 0 (104)
1 , 1 0? 10 0 . To satisfy R,,, = 0, the four terms in (103) should be zero.
Ry = D) ( - 0_2@) v+ 2 Dxk O ¥ We substitute (104) into (103), leading to
10 0 . 1 rA
—— 98 B T
T2 9er 9ar (%8) Rop=1=7+ 72 =0
We could pick a corresponding set of generalized coordi- Ryy = Rogsin®0 =0
nates in the deformed space so that the following auxiliary R _ B" A 0
condition is satisfied Y ) + A
9 e _BL B 105
@,}:o (99) Ru=g3+—=0 (105)
wherev = 1,2,3,4. The Ricci tensor then takes the form  From Rge in (105), we observe that
1 92 L rA doryN
2 _ = (=)=1
(V —07@) huy = —2Ryu A A2 dr (A)
5 A
In free space wher@),, = 0, the Einstein equation irp§) 1 nerefore, by applyingd = 7, we have
reduced to the form of the wave equation for the metric
drB) _ (106)
2 dr
v? - 10 By =0 (100) _ o . .
c? ot? Next, using the relation in (104)R,.. in (105) is reduced to
Then we can find a solution for gravitational plane wave —rB" — 2B —0
propagating in the z-direction as
. which implies
B = (ho)mn e (101) P
d(r?B")
where (m,n) = (z,y) and (ho)mn = constant, only the dar =0 (107)

spatial parts of the metri€hy,, hay, hy,) are deformed, and
no modification of the z-coordinate and time t.

For a solution to (106), we take

rB=Xr—k)
IV. SCHWARZSCHILD METRIC
or
We now consider the solution of Ricci tensor outside i
a spherically symmetric mass distibution. Assume that the B =)\ (1 — _) (108)
metric is in the form r

(ds)? = A(dr)? — B(cdt)? + r2[(d6°) + sin®6(d¢)¥(102) where k is a constant. Applying (108), we have

where A and B only depend omr. By the assumption in (102),
we first compute all thd's with indicesr, 6, ¢ with (35).

Ak

r2

2B — 2 (_) = Ak = const

Next, we compute all the Ricci tensors with indices),¢ which satisfies Eqn.(107).
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We definek = 2%‘4, and rescale the coordinate — The Ricci tensor of a linearized gravitational wave takes the
t/+/(\). By substituting the value of k into (108) and usingiorm [1]
A= %, BandA are solved as . 1 o i3_2 liiw'/\
2GM ) c2ot2 ) M T 2 9xn 9z TV
B=1-— 2, 19 o . 115
o1 T30 o (113)
1—(2GM/c?r) wherey*” is defined as
Thus, the Schwarzschild metric in (102) can be rewritten as 1
(%V———i———um”—e—zaM)@aQ Vi = kot = (10
1—(2GM/c?r) cr with i = hyy + hyy, andyh” satisfies the auxiliary condition
+r2[(d6°) + sin® §(do)?) (109) pyo>
L
Consider the Newnonian limit of the Schwarzschild metric. ox™ 0 (117)
For r — oo andc — oo, (109) is reduced to Eqn.(116) can thus be expressed as
2GM
2,02 _ [1_ 2 or 1 1
(ds)” = (dz) (1 2 ) (cdt) (110) Y = hgs — i(hmz + hyy) = i(hm = hyy)
If we substitute the gravitational potential of the Newtonian ¥3? = hay ) )
gravity in (75) into (84), we have Y = hyy — §(hm + hyy) = §(hyy — haz)
s — 2GM . o 1
44 — CQT ,[Z)zz =Y, = —i(hmm —+ hyy)
Thus, by (85), and the terms of%” with other combination of: and v are
2G M zero. By imposing (117) withy = 1, 2, 3 and 4, respectively,
gaa=—(1~ 2r ) we have
which reproduces the same result as the Schwarzschild metric o YT n oY 0
in the Newnonian limit in (110). ox*  Ox oy
81/)? oYyt N gy 0
V. LINEAR PERTURBATION THEORY o O oy
To describe gravitational waves as linear perturbations on ot 0 10(hae + hyy) 0
a flat background spacetime, the metric components can be or> 9z 2 0z -
approximated as [5] oy ot 1 0(haz + hyy)
9z*  (ct) 2 Oet =0 (118)
Guv = NMpv + Iy + 0(62) (111) * (ct) (ct)

. . o Sinceh,s depends only orx andct, it is trivial that the first
wheren,,, represents the Minkowski metrie,is the order of two equations hold. The last two equations imply that
magnitude oft,,,,, which is much smaller than unity. Consider

a planar gravitational wave propagating in vacuum in the hez + hyy =0
direction. The only components of metric perturbation which
might not vanish arév.s, with o, 3 = 1,2, wherea and
are used to index the two-dimensional coordinates transverse Pyw = —hyy (119)
to the propagation direction of the gravitational wave. Thus, ) _
the 2 x 2 symmetric matrix{,3} depend only on the phaseBY imposing (114) and (119)as(u) in (113) can be repre-
coordinate sented as
ct —z hi(uw)  hx(u)
=7 (112) hap(u) = (120)
ho(u)  —ha(w)

and the first-order line element can be represented as
) ) cqp ) ) where h (u) and hy (u) characterize two different polariza-
ds” = —(cdt)” + [ap + hap(u)ldz®dz” + dz” + O(€) tion states, withh, called the plus polarization anbl, the
(113) cross polarization.
Under the auxiliary condition (117), the solution of (115)

Assume that only the(x,y)_dlme_nsmns of the metric A€ can be represented as a plane wave propagating inzthe
deformed, and the andct dimensions are unaffected. Smcedirection as

the spacetime metrig,, is symmetric, the perturbational
termsh,,, in the metric are assumed to be symmetric, namely, hag = hago f(u)

hay = hya (114) where f(e) is an arbitrary waveform.
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The Rosen coordinate@:, v, x!, %) can also be used toIf both points A and B lie on the z-axis, (127) atz = 0
describe non-perturbative optical observables in the presefezomes

of a gravitational wave. The line element in Rosen coordinates 1
can be represented as Aly = /1 + hge(t,0)Az ~ [1 + §hmm(t, 0)] Ax(128)

ds® = —2dudv + vag(u)dxo‘dxﬁ (121) o ) o .
which implies the change in distance between the two mirrors
where the relation with quasi-Cartesian coordinates is is
1 Aly, — Az 1 1
ct=—(v+u) T = _h,.(t,0) = =hy(ct
V2 Az B za(t, 0) B +(ct)
1 . o
z2=—(v—u) (122) which reveals the temporal waveform of the gravitational
V2 wave.
which implies thatv = (ct 4 z)/+/2. By substituting (122)  Similarly, if both pointsA and B lie on they-axis, (127)
into (121), we obtain the exact line element becomes

ds® = —(cdt)? + Yap(u)dz®dz® + dz?  (123)

Aly = /1= hyu(t,0)Ay ~ [1 - %hm(t, 0)} Ay(129)

Therefore, the change in distance between the two test masses

By equating (123) to (113), we have

Yas = Sap + hap + O(e?)

is
which takes the form of (111). Al — A 1 1
VI. DETECTION OFGRAVITATIONAL WAVES Y
By substituting the matri, g in (120) into (113), we have
ds? = —(cdt)? + [1 + hs (W)]da? + [1 — ho (w)]dy? H
+2hy (u)dzdy + dz* (124) i
2
Thus, a general gravitational plane wave propagating in the TO/"‘
z-direction can be represented as M| -5
- _ = T
0 0 0 0
0 hi(u) hx(u) O
huw(t, z) = (125)
0 hx (u) _h+ (u) 0 Fig. 4. A test massV/, with a distancery from the test masd/; at the
origin and an angle) from the z-axis.
| 0 0 0 0 |

Fig.4 shows a test mask/, with a distancery from the
. S . . test massi; at the origin and an angle from the z-axis.
spectively. The initial coordinates of pointd and 5 are Thus, the relative coordinates af, with respect toM;, can

Ty = (ct,0,0,0) and 75 = (ct, 25, ys, z), respectively. be represented by using (128) and (129) as
Consider a plus-polarized gravitational plane wave propagting

Consider two test masses placed at poidAtand B, re-

in the z-direction, which can be represented as

z(t) = [1 + %hm(t, 0)] T COS ¢

[0 0 0 0
0 h(u) 0 0 y(t) = [1 - %hm(t, 0)] 70 Sin ¢ (130)
huv(t, z) = (126) o ] .
0 0 —hi(u) 0 By eliminating theh,..(¢,0) terms in (130), we derive
€T Y
L O 0 0 0 rocos¢  rosing

with the corresponding line element

ds® = —(cdt)? + (1 + hyy)dz® + (1 — hay)dy® + dz*

The proper distance between pointsand B at fixed (z, ct)

can thus be calculated as

Al =VAs2 = /(1 + hy)Az? +

(1 —hys

JAy?

(127)

which implies that the test madgs moves around its initial
position along a straight line with a slope eftan ¢.

Consider multiple test masses forming a perfect circle with
radiusry on thezy-plane. By eliminating the terms in (130),
we obtain

(131)
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which is an ellipse with semi-axes or
1
at(t) = [1 + §hzz(t, 0)} o 2 (t) = %ro(sm(b + cos @) [1 + %hzy(t, 0)}
1 1 1
by (t) = [1 - §hm(t, 0)} o Y (t) = %ro(sm(b — cos @) [1 - §hzy(t, 0)] (137)

Whenhm(_t, 0) > 0, the circle of test_ masses Wi|! be stretche%y eliminating theg terms in (137), we derive
in the z-direction and squeezed in thgdirection. When

hs=(t,0) < 0, the circle will be stretched in thg-direction z'? Y2
and squeezed in the-direction. 0 (]2 + MO 1 (138)
Next, consider a cross-polarization gravitational plane-wave
propagting in thez direction as which is an ellipse with semi-axes
[0 0 0 0]

ax(t) = [1 + %hzy(t, 0)} 7o

0 0 hy(u) 0 1
huw(t, z) = (132) by (t) = [1 — 5hmy(t, 0)] o
0 hx(u) 0 0
| 0 0 0 0 | "
with the corresponding line element A ®
at
ds® = —(cdt)? + dz® + dy* + 2hy,drdy + d2* by (t)
The proper distancé? between two test masses at a given Wi .

can be represented as

Al =Vds? = \/ Az? + Ay? + 2h,, AzAy (133)

which implies that the distance changeairdirection is i - _ _
Fig. 5. Elliptical deformations caused Iy (¢) and hx (t), respectively.

/ Ay
Al = \/AJU2 + hy AyAx = Axy[1+ hry@ Thus, both plus polarizations and cross polarizations give
Ay rise to elliptical deformation in the distribution of test masses,

1 1
~ Ax (1 + 5%;,@) =Az+ §hryAy (134) and the elliptical deformation caused by cross polarization is
rotated byr/4 to that of the plus polarizaton.

and the distance change in thedirection is

ALy, = \/Ay2 + hoyAzAy = Ay [1+ hzy% A. LIGO
Y

1 Ax 1

~Ay |1+ chyy— | = Ay + —hgy A 135
y(+2 yAy) y+2 yor (135)
If a test mass is placed with a distangg from the origin
and an anglep from the x axis, then its coordinates can be
determined by using (134) and (135) as

z(t) =ro [cos o+ % sin ¢hay (t, 0)}

y(t) = 1o [sin o+ % oS Phay (1, 0)} (136)

By rotating thezy plane around the axis by45°, ana’y/ Fig. 6. Coordinategz’, ', 2’) for incident gravitational wave ang, v, z)
. . ' for LIGO instrument.
coordinate system is formed as

' cos45°  sin45° r Fig.6 shows the coordinates’, s/, ) for incident grav-
= itational wave and(z,y, z) for LIGO instrument. The grav-
Y —sind5°  cos 45° Yy itational wave is assumed to propagate along theaxis,
1 1 1 x which can be characterized i§¢, #). The coordinate system
= («',y/,7") can be derived by rotating the coordinate system
V2 -1 1 Yy (z,vy, z) by ¢ about thez-axis, and then by about thex-axis

10
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to have Consider a special case that,y', z’) = (z,y, ), and the
2! 1 0 0 gravitational wave is incident i direction. By substituting
(126) into (141), we have
y | = 0 cosf sind 1
h(t) = = (hagA™ + hyy A¥) = hy(u) (143)
, . 2
z 0 —sinf cosf
cosd sing 0 T Also, by substituting (128) and (129) into (140), we have
. 14+ hge/2)L— (1 —hgy/2)L
—sing cos¢ 0 Yy h(t):( + hax/2) L( /2) =hy(u)
0 0 1 < which is the same result as (143).
cos ¢ sin ¢ 0 T Let @ and© in the (ct, x, vy, z) coordinate system be repre-
sented asi’ and v’, respectively, in thect’, 2',y/, 2') coor-
= | —cosflsing cosfcos¢ sinf y | (139) dinate system. Ifi (') is related tov (¢') in the (ct, z,y, 2)
((ct', 2,4y, 2")) coordinate system, as
sinfsing —sinfcos¢ cosf z -
Fig.7 shows the configuration of the Advanced LIGO detector u= h:/ v (144)
w=h- v (145)

whereh and?’ are the perturbation tensors in the, =, y, 2)
and the(ct’, 2, v/, 2’) coordinate systems, respectively.

If the (ct, z,y, z) and the(ct’, 2, ¢/, 2’) coordinate systems
are related by the rotation in (139), we have

laser DMy My _
splitter i ! 2 W —=R-u (146)
! v =R-% (147)
6) photodetector
where
Fig. 7. Configuration of LIGO'’s interferometer [9]. ~ _
1 0 0 0
[9], which is a modified Michelson interferometer designed
to measure gravitational wave strain. A coordinate system _ 0 cos ¢ sin ¢ 0
(ct,x,y, z) is defined, with the two orthogonal arm of the R= 148)
LIGO aligned along thex and y axes, respectively. The 0 —cosfsing cosfcos¢p siné
separation between mirrof/; and M, is Ax = L = 4 km,
that between mirrors\/s and My is Ay = L = 4 km. The | 0 sinfsing —sinflcos¢ cosf |
gravitational-wave strain is measured as the difference between
Al, and A¢, as [10] is the rotation matrix derived in (139), with an additional
Al — AL time coordinate. By substituting (144) into (146), and then
h(t) = % (140) subtituting (147) into (145), we have
By the definition in (140), we assume a tensor format for W =R i—R-h-o— W R-© (149)
the combined response of the two arms of LIGO as [11]
1 S
h(t) = §h;wAW (141) which implies
= =—1 =/ =
whereh,,, is the gravitational wave measured in the LIGO’s h=R -h-R (150)
coordinates, and
00 0 0] A gravitational wave (GW) with plus polarization propagat-
ing in the 2’ direction is characterized as
01 0 O - .
0 0 0 0
AR = (142)
0.0 =10 oo kw0 0
h = (151)
L0 0 0 0] 0 0  —hi(u) O
indicates the components df,, measured by the LIGO
instrument, namely(A¢, — A¢,)/L. | 0 0 0 0 |

11
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which can be transformed into thet,z,y,z) coordinate where 7 is the time delay, and! is the distance between
system by substituting (148) and (151) into (150) to have two detectors. The relation in (157) thus constrains the source

0 0

0 cos? ¢ — cos? fsin® ¢

- direction to a ring on the sky. When the arrival time estimates
are affected by noise, we can use the Maximum Likelihood
Estimator as

h = ha (u) T, T < —d/c
0 (14 cos?)sin¢cos¢ .
0 =< cosi(cr/d), —d/c<T<d/c (158)
| O sin 6 cos 6 sin ¢ 0 J
0 0 - , T>d/c
(1 + cos?f)sinpcos¢p  sinf cosfsin ¢ 607 /
(52 ]
sin® ¢ — cos2fcos® ¢  —sinfcos b cos ¢ pros T // P
N source
/Hld 11 .
— sin @ cos 0 cos ¢ —sin?6 36°N - § !
i y ;
Then, the LIGO response to the plus-polarized GW is obtain: 24
by substituting (152) into (141) to have 50 %
1 o0
h(t) = §h+ (u)(1 + cos? ) cos 2¢ (153) 7 Taoew 100 BOW x

Similarly, a GW with cross polarization propagating in theig. 8. lllustration of the relation between GW source and detectors baseline

z' direction is characterized as

in (157), and the coordinate system with positions of three detectors on the

y — z plane.
[0 0 0 0]
Fig. 8 illustrates the relation between GW source and
0 0 hy(u) 0 dgtectorg_baseline in (157), and shows a coordinate system
n = (154) with positions of three detectors on the- = plane.
0 hy(u) 0 0 Assume that the distribution of measured arrival times for a
given source follows a gaussain distribution with mean equal
0 0 0 0 to the true arrival time and variance equal to the variance of

the arrival time estimate. Define the systematic bias as

By substituting (148) and (154) into (150), we derive

i i By=<0> -0 (159)
0 0 0 0 .
where< 6 > is the expectation value of the estimator in (158),
B 0 —cosfsin2¢ cosfcos2¢p cospsind and @ is the true angle between the source and the detectors
h = hy(u) baseline.

0 cosfcos2¢ cosfsin2¢ singsinf

| 0 sinfcos¢ sin @ sin ¢ 0 |
(155)

q
which is substituted into (141) to obtain the LIGO respons
to a cross-polarized GW as

h(t) = —hy (u) cos 0 sin 2¢ (156) %

B. Source Localization Fig. 9.

assuming a gaussian arrival time error distribution with= 1 ms (

-1
20 40 60 80 100 120 140 160 180 45 60 80 100 120 135

6(%) 0(°)

Angular bias for the Livingston-Hanford (L1-H1) baseline when

)

The first gravitational wave detection GW150914 was dé@ndo = 0.1 ms (— — —), respectively.

tected by the two LIGO detectors, one in Livingston, Louisiana

and the other in Hanford, Washington. For two detectors Fig.

9 shows the angular bias defined in (159) for the

at different locations, if we assume that the difference invingston-Hanford (L1-H1) baseline when assuming a gaus-
travel time between sites is due only to the direction of thgjan arrival time error distribution withr = 1 ms ando = 0.1
gravitational wave source, then the angle between the sounae, respectively. We apply twenty thousand sets of arrival

and the detectors baseline can be estimated as times with simulated errors from different sky positions, snd
L, /cT use the distance of the Livingston-Hanford (L1-H1) baseline,
6 = cos (g) (157) whered/c = 10 ms.

12
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