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Abstract—With the high sensitivity and angular resolution of
next-generation radio telescopes such as the Square Kilometre
Array (SKA), high time-resolution universe at radio wavelengths
can be revealed. We simulate the instantaneous visibility data
of M31 based on possible SKA configuration, and performed
reconstruction by implementing state-of-the-art algorithms such
as CLEAN, MS-CLEAN and IUWT-based compressed sensing
(CS) method. It has been proved that the IUWT-based CS
method outperforms the CLEAN-based algorithms. Furthermore,
we show the potential of the discrete orthogonal Stockwell
transform (DOST), which can reveal more details than the
IUWT. Therefore, we propose to associate the compressed sensing
technique with the Stockwell transform for a better optimization
of the reconstruction in radio interferometric imaging.

I. INTRODUCTION

A radio interferometer assembles an array of radio tele-
scopes that work together as a large single telescope to
achieve higher resolution. Unlike single dish telescopes, radio
interferometers provide discretely-sampled visibility, which is
a cross-power spectrum in spatial frequency(u, v). Hence, one
critical challenge in radio interferometry is to reconstruct the
intensity of astronomical sources from such discretely-sampled
visibility. This is known as the interferometric inverse problem.

Aimed at improving the reconstruction of astronomical
signals from interferometers, state-of-the-art approaches in-
clude CLEAN, Multi-scale CLEAN, and compressive-sensing
(CS)-based methods. In general, astronomical signals can be
categorized into point sources or extended sources. Therefore,
it is reasonable to assume sparsity of astronomical image in
either image or wavelet domain.

To reconstruct astronomical images by using wavelet basis
in CS, an isotropic undecimated wavelet transform (IUWT)-
based CS method was proposed in [1], where the linear
imaging system can be represented as

V̄ = ¯̄Φ · Ī = ¯̄Φ · ¯̄Ψ · ᾱ (1)

where V̄ is the observed visibility vector,̄̄Φ is the matrix
representing two-dimensional Fourier transform and sampling
in the uv domain, andĪ is the reconstructed image which
has a sparse representationᾱ, and IUWT-based dictionarȳ̄Ψ.
Then, the image can be reconstructed by solving

Ī = arg min
Ī

{
‖V̄ − ¯̄Φ · Ī‖2 + τ‖ᾱ‖1

}

whereτ is the regularization parameter.
However, high time-resolution universe at radio wavelengths

remain unexplored because the sampling rate is low due to

insufficient sensitivity of most radio telescopes. To increase
sensitivity, most existing fast radio transients are detected with
large aperture single dish telescopes. However, the localization
of transient signals performs poorly due to the limited angular
resolution of single dish telescopes.

Requirments for fast radio transients detection include high
instantaneous sensitivity, large field-of-view (FoV), capability
of localizing the source of an emission with high angular
resolution [4], [5]. Therefore, next-generation radio interfer-
ometer arrays, such as the Squared Kilometre Array (SKA),
is designed with large number of radio telescopes and small
elements / dishes to reach those requirements.

Two major goals of SKA is to observe transient sources
and 21 cm hydrogen line in galaxies. With the increased
sensitivity and field of view of the SKA, more extragalactic or
fainter transient soucres can be detected to test the theoretical
mechanisms of compact, high-energy objects such as neutron
stars or black holes. The unrival sensitivity and resolution
of the SKA in the 21 cm hydrogen line (1,420 MHz) will
also be able to reveal young, newly formed galaxies at
cosmological distances, which helps unravel the processes of
galaxy formation and evolution.

In this work, we plan to simulate galaxies observed with
SKA, and then compare our recontruction methods with state-
of-the-art algorithms such as CLEAN, Multi-scale CLEAN,
and IUWT-based CS methods. The reconstruction approach
proposed is based on the basis pursuit denoise (BPDN) in CS,
with a 2-D decomposition by the Stockwell transform. The
major contribution of this work is the introduction of Stock-
well transform into interferometric image reconstruction. With
the high sensitivity and angular resolution of next-generation
radio telescopes such as the SKA, our proposed method aims
at detailed reconstruction with high time-resolution.

II. RECONSTRUCTIONTHEORY AND ALGORITHMS

The intensity I(x, y) of an astronomical source and the
visibility V (u, v) are a two-dimensional Fourier transform
pair, which can be formulated as [1]

V (u, v) =
∫∫

I(x, y)e−2πi(ux+vy)dxdy (2)

I(x, y) =
∫∫

V (u, v)e2πi(ux+vy)dudv (3)

where(x, y) represents the sky coordinates in units of radian,
and (u, v) are defined asu = U/λ and v = V/λ, whereU
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and V are the physical lengths of the projected baseline and
λ is the observed wavelengh.

Due to the wide spacing between antennas, there are many
unsampled data points in theuv plane. The limiteduv cover-
age problem is usually solved by filling unsampled visibilities
with zero [2], which is known as zero-padding technique. In
this way, (3) can be rewritten as

ID(x, y) =
∫∫

V (u, v)S(u, v)e−2πi(ux+vy)dudv (4)

whereS(u, v) represents the sampling mask ofV (u, v). The
resulting ID is called the dirty image. Such reconstructed
image obtained by (4) is known to cause numerous ripples
and a finite resolution-cell size in the resultant images [2].

Angular resolution, which is often referred to as diffraction
limit and beam size in optical and radio astronomy, respec-
tively, is given by

θ ' λ

D

whereλ is the observing wavelength andD is the diameter
of a single dish telescope or the maximum baseline of an
interferometer array. Objects with angular distance smaller
than the angular resolutionθ can not be resolved due to limited
diameter or baseline.

Although longer baselines in interferometry can result in
a higher resolution, extended structure, which has wider and
smoother emission, can only be reconstructed by observation
with shorter baselines. However, the minimal baselines are
limited by the dish sizes in practice.

The CLEAN algorithm is the most successful and widely-
used method for deconvolving interferometric data [8]. By
assuming that the observed emission is only composed of
point sources, the CLEAN algorithm iteratively finds the
highest peak in the residual map, subtracts a beam-convolved
fraction of a delta function fitted to the peak, and saves theδ
components in a separate image.

To improve the quality of CLEAN algorithm in reconstruct-
ing extended sources, the Multi-Scale CLEAN (MS-CLEAN)
was proposed [9]. Unlike traditional CLEAN algorithm using
Dirac-delta functions, MS-CLEAN uses components in differ-
ent scales to model astronomical sources. Multi-Scale CLEAN
is stable in the presence of a spatially varying background
provided sufficiently large scales are included in the search.
The large scale structure is removed first, and then the fine
scale structure is left to be estimated on a largely empty
background.

Very recent approaches using compressive sensing (CS)
with sparse modeling provide an additional constraint which
assumes sparsity of the image. It can be used in resolving
compact sources such as the super-resolution image of black
hole shadow or point sources. Even if the assumption of
sparsity in the image domain would no longer hold for
extended sources, we can also transform our image to another
domain in which the corresponding solution becomes sparse,
for example, the wavelet domain.

Fig. 1. M31 test image used in radio astronomy simulations [9], [12], [14].

III. SIMULATION OF THE SKA DATA

A. Test Image and SKA Configuration

Fig.1 shows the intensity distribution (256× 256 pixels) of
an M31 test image at declination of35◦, which is taken at
1.42 GHz. The maximum intensity is normalized to 1.

The configuration of the SKA compact array proposed
in [22] contains 1,200 antennas within an area of diameter
less than 3 km and approximately 2320 antennas inside35
km. As a precursor of the mid-band SKA, the antennas
of the MeerKAT array are distributed in a two-dimensional
fashion with a Gaussian uv-distribution [23]. By assuming two
different 2-D Gaussian distribution within 3 km and 35 km,
respectively, we simulate the SKA compact array that fits the
conditions proposed in [22].

Fig. 2. Simulated locations of the antennas in the central35 km core of
SKA [22], with the center assumed at latitude34◦N.

Fig.2 shows the simulated locations of the antennas in the
central35 km core of SKA, with the center assumed at latitude
34◦N.

For a target with hour angleh and declinationδ, the
relation between the baseline vectorB̄ and the sampled spatial
frequencies can be represented as [16]
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B. Visibility Data Simulation

The uv coverage of an interferometer array is represented
by the projected baseline vector on the sky, which depends on
the declination and the hour angle of the source. The baseline
vectorB̄, which implies the difference of coordinates between
the telescopes, is represented as

B̄ = ∆Xī + ∆Y j̄ + ∆Zk̄

whereī, j̄ andk̄ point respectively toward the East, the North
and the Meridian.

By using the coordinates of the antennas in Fig.2, theuv
coverage for the M31 test image, which is at declination
35◦, can be simulated by substituting∆x, ∆y and ∆z of
each baseline pair into (5). Fig. 3 shows the instantaneousuv

Fig. 3. Simulated instantaneousuv coverage of the simulated central core
of the SKA, assumed to observe the M31 test image at declination 35◦.

coverage of the simulated central core of the SKA, assumed
to observe the M31 test image at declination 35◦.

Fig. 4. Number density (in log scale) of the simulated configuration of SKA
in Fig.2, with 100m2 per cell.

Fig.4 shows the number density of the simulated configu-
ration of SKA. The number density is defined as the number
of visibility data in each cell.

To simulate the observed visibility data at each point on
the uv coverage plane, the Fourier relation in (2) and (3) are

applied to the test image to obtain the complex visibilities of
those points as

V (u, v) = ∆x∆y

M/2−1∑

x=−M/2

N/2−1∑

y=−N/2

I[x, y]e−2πi(ux∆x+vy∆y)

(6)

whereM and N are the number of pixels along thex and
y direction, ∆x and ∆y are the angular resolution of each
pixel in radians, andu, v are the baselines represented by the
observed wavelengthλ.

Fig. 5. Simulated visibility data of the central35km core of the SKA.

Fig.5 shows the simulated visibility data of the35km central
core of the SKA.

C. Dirty image Reconstruction

We regrid the simulated visibility data obtained from (6) by
the triangulation-based linear barycentric interpolation method
[18]. In the triangulation-based linear barycentric interpolation
method, the regridded data at a grid point can be represented
as the weighted average of the values at the three vertices of
the enclosing triangle as

V = λ1V1 + λ2V2 + λ3V3

whereλ1 + λ2 + λ3 = 1, andV1, V2 andV3 are the measured
visibility data at the three vertices.

Fig. 6. Illustration of the triangulation-based barycentric linear interpolation
[18].

Fig.6 illustrates the triangulation-based barycentric linear
interpolation.λα are defined as the percentage of each cor-
responding area, namely,λα = Aα/

∑3
k=1 Ak.
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With the regridded visibility, the dirty image can be recon-
structed as

ID [x, y] = ∆u∆v

M/2−1∑

u=−M/2

N/2−1∑

v=−N/2

V [u, v]e2πi(u∆ux∆x+v∆vy∆y)

(7)

where∆u and∆v are the spacing of each regridded visibility
cell in radians. In Python, the 2-D inverse FFT is defined as

I[x, y] =
1

MN

M−1∑

u=0

N−1∑

v=0

V [u, v]e2πi(u∆u0x∆x+v∆v0y∆y)

=
1

MN

M−1∑

u=0

N−1∑

v=0

V [u, v]e2πi(ux/M+vy/N) (8)

where 1/M = ∆u0∆x and 1/N = ∆v0∆x due to the
uncertainty principle.

If we assumeM = N in (7) and (8), the relation between
the dirty image and the inverse FFT can be derived as

ID [x, y] =
1

∆x∆y

N/2−1∑

u=−N/2

N/2−1∑

v=−N/2

V [u, v]e2πi(u∆u0u′x∆x+v∆v0v′y∆y)

=
1

∆x∆y

N/2−1∑

u=−N/2

N/2−1∑

v=−N/2

V [u, v]e2πi(uu′x+vv′y)/N

whereu′ = ∆u/∆u0 andv′ = ∆v/∆v0 are the scaling factors
along theu andv directions.

Fig. 7. Dirty image with512 × 512 pixels obtained from the simulated
instantaneous visibility data of the SKA.

Fig.7 shows the dirty image with512×512 pixels obtained
from the simulated instantaneous visibility data of the SKA,
by directly applying inverse FFT to the regridded visibility
data.

The synthesized beam caused by the sampling holes onuv
plane is defined as

B = F−1{S} (9)

whereS is the sampling mask onuv plane, withS(u, v) = 1
for all measured data points andS(u, v) = 0 otherwise.
Similar to the procedure of obtaining the dirty image, we

derive the regridded sampling mask via the triangulation-
based linear barycentric interpolation, and then apply two-
dimensional inverse Fourier transform to obtain the synthe-
sized beam.

Fig. 8. Synthesized beam of the simulated SKA observation on M31 test
image.

Fig.8 shows the synthesized beam of the simulated obser-
vation on M31.

IV. RECONSRUCTIONALGORITHM

A. Compressive Sensing (CS) Based Reconstruction

Theoretically, CS uses basis pursuit (BP) approach to find
the solution to (1) by solving

min‖ᾱ‖1 s.t. V̄ = ¯̄S · ¯̄F · ¯̄W
−1

· ᾱ (10)

In practice, for measurements contaminated by noises, BP can
be replaced by a more general algorithm: basis pursuit denoise
(BPDN), where the solution is given by

min ‖ᾱ‖1 s.t. ‖V̄ − ¯̄S · ¯̄F · ¯̄W
−1

· ᾱ‖2 ≤ ε(11)

With the IUWT basis, the equation of image reconsruction
via compressive sensing in (1) can be rewritten as

ᾱ = arg min
ᾱ

{
‖V̄ − ¯̄S · ¯̄F · ¯̄W

−1
· ᾱ‖2 + λ‖ᾱ‖1

}
(12)

where ¯̄S is the sampling mask ofuv domain, ¯̄F is the 2D
Fourier matrix, and ¯̄W

−1
is the inverse IUWT. Since astro-

nomical images contain mostly isotropic or quasi-isotropic
objects such as stars, galaxies or galaxy clusters, the IUWT
is the most popular wavelet transform algorithm in astronomy
[11].

In IUWT, an N × N image c0 is decomposed into a
coefficient setW = {w1, ..., wS, cS} as [10]

c0[m, n] = cS [m, n] +
S∑

s=1

ws[m, n]

wherecS is a coarse or smooth version of the original image
c0 andws represents the details of c0 at scale2−s. The index
s = 1 corresponds to the finest scale or highest frequency

4
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structure. The passage from one resolution to the next one is
obtained as

cs+1[m, n] =
K∑

k=1

L∑

`=1

h1D[k]h1D[`]cs[m + 2sk, n + 2s`](13)

ws+1[m, n] = cs[m, n]− cs+1[m, n] (14)

whereh1D is typically a symmetric low-pass filter. In IUWT,
the non-orthogonal Astro filter bank is used as

h1D = {1, 4, 6, 4,1}/16 (15)

and the corresponding high-pass filter is

g1D = {−1,−4, 10,−4,−1}/16

However, the high-pass filter is redundant in IUWT, since the
high frequency image can be recontructed by the subtraction of
the current-stage low frequency image with the previous-stage
low frequency image, as formulated by (14).

B. Discrete Orthogonal Stockwell Transform (DOST)

The 2-D Stockwell transform (ST) with a Gaussian window
for a continuous-domain functionh(x′, y′) is defined as [19]

S(x, y, u, v) =
∫ ∞

−∞

∫ ∞

−∞
h(x′, y′)

uv

2π
e−[(x′−x)2u2+(y′−y)2v2]/2

e−i2π(ux′+vy′)dx′dy′ (16)

Thus, the shape of the Gaussian kernel changes with respect
to spatial frequenciesu andv.

The 2-D ST has a close relation to the Fourier transform
(FT), which can be written as

H(u, v) =
∫ ∞

−∞

∫ ∞

−∞
S(x, y, u, v)dxdy (17)

whereH(u, v) = F{h(x′, y′)}. Through the relation with FT,
the ST in (16) can also be represented as operations on the
Fourier spectrumH(α, β)

S(x, y, u, v) =
∫ ∞

−∞

∫ ∞

−∞
H(α + u, β + v)e−2π2α2/u2

e−2π2β2/v2

ei2π(αx+βy)dαdβ

Taking advantage of the FFT calculation, the discrete 2-D
ST coefficients of an imageh[m, n] can be expressed as

S[m, n, u, v] =
M−1∑

α=0

N−1∑

β=0

H[α + u, β + v]e−2π2α2/u2
ei2παm/M

e−2π2β2/v2
ei2πβn/N ∆α∆β

wherem = 0, 1, ...,M−1 andn = 0, 1, ...,N−1. The relation
between ST and FT in (17) can be discretized as

H[u, v] =
1
N

N−1∑

n=0

1
M

M−1∑

m=0

S[m, n, u, v]

whereH[u, v] are the discrete 2-D Fourier coefficients. There-
fore, the original image can be reconstructed as

h[m, n] =
(

1
N

)2 N−1∑

n′=0

N−1∑

v=0

(
1
M

)2 M−1∑

m′=0

M−1∑

u=0

S[m′, n′, u, v]ei2παm/Mei2πβn/N ∆u∆v

Based on the sampling theorem, less spatial resolution is
required for a lower frequency band. Therefore, the discrete
orthogonal Stockwell transfrom (DOST) was proposed to re-
duce the storage and speed up the discrete Stockwell transform
by pursuing a non-overlapping multi-resolution partition over
the time-frequency domain [20].

V. I MPLEMENTATION RESULTS AND DISCUSSIONS

(a) (b)

(c) (d)

(e) (f)

Fig. 9. IUWT of M31 up to 4 scales. The maximum intensity of each image
is normalized to 1. (a)-(e) Four wavelet scales and the final low frequency
image by performing IUWT of the M31 test image, (f) original M31 test
image.

We composed a multi-stage IUWT Python code and demon-
strate on the test image. Fig. 9 shows the results of four-stage
IUWT of the simulated M31. Fig. 9(a) to (e) represent the
images from the highest frequency to the lowest frequency,
corresponding to the wavelet coefficeientsw1, w2, ..., w4, c4,
respectively.

Consider anM ×N image withs-stage IUWT decomposi-
tion andM ×N points on theuv plane. Then, we havēα with
length (s + 1)MN , ¯̄W

−1
with sizeMN × (s + 1)MN , and

¯̄S ¯̄F with sizeMN ×MN . The DFT matrix can be generated

5
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as

¯̄F =




1 1 1 · · · 1

1 ω ω2 · · · ωMN−1

1 ω2 ω4 · · · ω2(MN−1)

...
...

...
. . .

...

1 ωMN−1 ω2(MN−1) · · · ω(MN−1)(MN−1)




whereω = e−i2π/MN .
Limited by our computer memory, we takeM = N = 65

ands = 4 with the simulated visibility data of the SKA. Thus,
we regrid theuv plane with104× 104m2 per grid so that we
have65×65 points on ouruv plane. After solving the equation
with BPDN, the reconstructed̄α is obtained. We then apply
inverse IUWT onᾱ to solve the reconstructed image.

(a) (b)

Fig. 10. (a) Reconstructed M31 test image (256× 256) with size65× 65
by using BPDN withε = 0.001. (b) Original M31 test image (256× 256)
for comparison.

The results using BPDN withε = 0.001 are shown in
Fig. 10(a), with residuals at the order of10−4. Since we
assumed a65 × 65 image instead of a256 × 256 image due
to memory issues, the reconstructed image only shows the
brightest central part of M31, recovering∼ 56% flux of the
original 256× 256 image.

We propose a reconstruction algorithm using DOST-based
CS for 2D image reconstruction. Unlike the wavelet ba-
sis functions, DOST basis are not self-similar. In wavelet
transforms, a phase modulation is applied to the frequency
domain due to the shift of wavelet functions in space. But
the basis functions of the DOST are not shifted and not self-
similar to each other. Furthermore, since DOST has a direct
relation to DFT, the absolutely-referenced frequency and phase
information can be maintained if applying DOST.

Define the mean square error (MSE) of a reconstructed
signalx(t) with sizeN as

MSE =
1
N

N−1∑

n=0

[x(t)− k(t)]2 (18)

wherek(t) is the reference or the original input signal. Then,
the peak signal to noise ratio (PSNR) ofx is defined as

PSNR = 20 log
xmax√
MSE

(19)

We derive both IUWT and DOST coefficients on the of the
M31 test image, respectively, and then compare the recon-
structed M31 images after compressing the smallest 90% of
those coefficients to zeros. Fig.11 shows both the compressed
IUWT and compressed DOST coefficients of the M31 test
image.

(a) (b)

Fig. 11. Reconstructed M31 images using 10% of coefficients. (a) IUWT-
reconstructed image withMSE = 4.6 × 10−4 and PSNR = 33.38, (b)
DOST-reconstructed image withMSE = 4.5×10−6 andPSNR = 53.46.

The IUWT-reconstructed and DOST-reconstructed M31 im-
ages are shown in Fig.11 (a) and (b), withMSE = 4.6×10−4,
PSNR = 33.38 andMSE = 4.5× 10−6, PSNR = 53.46,
respectively.

As one can see, the DOST-reconstructed M31 remains
sharper and more detailed information than the IUWT-
reconstucted M31. In the region with more extended emssion,
it is clear that the DOST-reconstructed M31 also keep more
original texture than the IUWT-reconstucted M31.

Finally, we compare the reconstruction with the most
widely-used algorithms: CLEAN [8] and MS-CLEAN [9].
On the basis of the two original papers ([8] and [9]), we
construct our own Python codes for CLEAN and MS-CLEAN.
Reconstruction of the M31 image with these two methods are
demonstrated in Fig.12.

Since the CLEAN algorithm assumes sparsity in image
domain, it requires huge number of iterations to represent
an extended source completely, which not only increases the
computation time but also creates negative bowls around the
emission. The results applied on the dirty image of M31 with

(a) (b)

Fig. 12. (a) CLEAN [8] reconstructed image with 15000 iterations and a loop
gain of 0.1. (b) MS-CLEAN [9] reconstructed image with 15,000 iterations,
a loop gain of1, and scale parameters ofα = 0, 3,6,12,24 pixels.

15000 iterations and a loop gain of0.1 are shown in Fig. 12(a).
Fig. 12(b) shows the final model image of MS-CLEAN with
a loop gain of1, applied on the M31 dirty image with scale
parametersα = 0, 3, 6, 12,24 pixels.
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The CLEAN and MS-CLEAN algorithms implicitly assume
the sparsity of astronomical images in the Dirac space and the
wavelet space, respectively, and solve them by matching pur-
suit (MP) procedure. IUWT-based algorithms assume sparsity
of astronomical images through IUWT bases, and solve the
minimization problem by basis pursuit (BP) related approaches
such as BPDN.

In this paper, all the mentioned state-of-the-art algorithms
have been implemented and discussed. In addition, we demon-
strated that the Stockwell transform (DOST) is even more
effective in reconstructing the details of astronomical image
than the wavelet transform (IUWT). Therefore, we believe
that DOST-based CS method has a great potential in the
improvement of radio interferometric image reconstruction.
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