

Properties and Kinematics in OMC1 with N₂H⁺ Observations

Yu-Hsuan Teng and Naomi Hirano

Outline

- Introduction
- Non-LTE Analysis
 - Large scale
 - High resolution
- Filamentary Structure
 - Filament identification
 - Gas motion in filaments
- Conclusions

Motivation

- Filaments are commonly observed in star forming clouds
- Hub-filament structure in high mass star forming regions Myers (2009)

Observations

- Orion molecular cloud 1 (OMC-1)
 - Distance: 414 pc
 - Nearest high mass star forming region

• N2H+ J=3-2

- Critical density ~ $10^6 cm^{-3}$
- SMA: 144 pointing mosaic
- CSO: OTF mapping
- Combine SMA and CSO data

SMA + CSO Results

SMA + CSO Results

Global Collapse

Large Scale Analysis

Large Scale Analysis

NRO 45m (1-0)

SMA+CSO (3-2)

⁶24⁸ 20⁸ 16⁸ 12⁸ 8⁸ 4⁸ 35^m0⁸

(3-2) / (1-0) ratio

Non-LTE Analysis

- •Using RADEX
- $\bullet N_2H^+$ (3-2) and (1-0) spectra model

 \rightarrow (3-2) / (1-0) intensity ratio model

•
$$T_{MB}(v) = \left(\frac{\sum J(T_{ex}^i)\tau_i(v)}{\sum \tau_i(v)} - J(T_{bg})\right) (1 - e^{-\sum \tau_i(v)})$$

- Compare three models with observations
 - \rightarrow Derive the physical parameters
 - Tkin: Kinetic temperature (8-60K)
 - $N(N_2H^+)$: N₂H⁺ column density (1e12-1e14)
 - *n*(*H*₂): H₂ density (1e4-1e9)

• Radiation from south-east (Orion KL)

	North		Western	Southorn
	(Eastern)	(Western)	western	Southern
$n(H_2) (cm^{-3})$	3×10^{6}	$\sim 3 \times 10^6 \ (\geq 10^7)$	3×10^{6}	3×10^{7}
$\mathbf{T}_{kin}(K)$	35 — 42	17 – 19 (12 – 14)	9 – 13	31 – 37
$\mathrm{N}(\mathrm{N}_{2}H^{+})(cm^{-2})$	3×10^{13}	3×10^{13}	10 ¹³	3×10^{13}
Typical Ratio	2.5 ± 0.25	1 ± 0.1	1 ± 0.4	4 ± 0.4

 Table 1
 Large-scale Parameters

• Radiation from south-east (Orion KL)

	North		Montorn	Couthorn	
	(Eastern)	(Western)	western	Southern	
$n(H_2) (cm^{-3})$	3×10^{6}	$\sim 3 \times 10^6 \ (\geq 10^7)$	3×10^{6}	3×10^{7}	
$\mathbf{T}_{kin}(K)$	35 – 42	17 – 19 (12 – 14)	9 – 13	31 — 37	
$\mathrm{N}(\mathrm{N}_{2}H^{+})(cm^{-2})$	3×10^{13}	3×10^{13}	10 ¹³	3×10^{13}	
Typical Ratio	2.5 ± 0.25	1 ± 0.1	1 ± 0.4	4 ± 0.4	

Table 1	Large-scale	Parameters
---------	-------------	-------------------

• Radiation from south-east (Orion KL)

	North		Mostorp	Southorn
	(Eastern)	(Western)	(Western)	
$n(H_2) (cm^{-3})$	3×10^{6}	$\sim 3 \times 10^6 \ (\geq 10^7)$	3×10^{6}	3×10^{7}
$\mathbf{T}_{kin}(K)$	35 – 42	17 – 19 (12 – 14)	9 – 13	31 – 37
$\mathrm{N}(\mathrm{N}_{2}H^{+})(cm^{-2})$	3×10^{13}	3×10^{13}	10 ¹³	3×10^{13}
Typical Ratio	2.5 ± 0.25	1 ± 0.1	1 ± 0.4	4 ± 0.4

 Table 1
 Large-scale Parameters

• Radiation from south-east (Orion KL)

	North		Western	Couthorn
	(Eastern)	(Western)	(Western)	
$n(H_2) (cm^{-3})$	3×10^{6}	$\sim 3 \times 10^{6} \ (\geq 10^{7})$	3×10^{6}	3×10^{7}
$\mathbf{T}_{kin}(K)$	35 — 42	17 – 19 (12 – 14)	9 – 13	31 – 37
$\mathrm{N}(\mathrm{N}_{2}H^{+})(cm^{-2})$	3×10^{13}	3×10^{13}	10 ¹³	3×10^{13}
Typical Ratio	2.5 ± 0.25	1 ± 0.1	1 ± 0.4	4 ± 0.4

Table 1 Large-scale Parameters

Filament Identification

High Resolution Analysis

High Resolution Analysis

ALMA+IRAM (1-0)

SMA+CSO (3-2)

ⁿ24^s 20^s 16^s 12^s 8^s 4^s 35^m0^s

(3-2) / (1-0) ratio

ALMA+IRAM (1-0)

SMA+CSO (3-2)

ⁿ24^s 20^s 16^s 12^s 8^s 4^s 35^m0^s

(3-2) / (1-0) ratio

Physical Properties of Filaments

(Filament regions)

	Core Regions (High Intensity) (> 34 K•km/s)	Low Intensity Regions (14-20 K•km/s)	Non-filament regions
$n(H_2)(cm^{-3})$	$3 \times 10^{7} \text{ or } 10^{7}$	3×10^{6} or 10^{7}	10^{6} or 3×10^{6}
$\mathbf{T}_{kin}\left(K ight)$	15–19 or 16–20	15–18 or 11–14	>40 or 20–25
$\mathrm{N}(\mathrm{N}_{2}H^{+})~(cm^{-2})$	1014	3×10^{13}	10 ¹³
Typical Ratio	1 ± 0.2	1 ± 0.2	2.2 ± 0.8

 Table 2
 High-resolution Parameters

Physical Properties of Filaments

(Filament regions)

	Core Regions (High Intensity) (> 34 K•km/s)	Low Intensity Regions (14-20 K•km/s)	Non-filament regions
$n(H_2) (cm^{-3})$	$3 \times 10^{7} \text{ or } 10^{7}$	3×10^{6} or 10^{7}	10^{6} or 3×10^{6}
$\mathbf{T}_{kin}\left(K ight)$	15–19 or 16–20	15–18 or 11–14	>40 or 20–25
$\mathrm{N}(\mathrm{N}_{2}H^{+})~(cm^{-2})$	10 ¹⁴	3×10^{13}	10 ¹³
Typical Ratio	1 ± 0.2	1 ± 0.2	2.2 ± 0.8

 Table 2
 High-resolution Parameters

Physical Properties of Filaments

(Filament regions)

	Core Regions (High Intensity) (> 34 K•km/s)	Low Intensity Regions (14-20 K•km/s)	Non-filament regions
$n(H_2) (cm^{-3})$	$3 \times 10^{7} \text{ or } 10^{7}$	3×10^{6} or 10^{7}	10^{6} or 3×10^{6}
$\mathbf{T}_{kin}\left(K ight)$	15–19 or 16–20	15–18 or 11–14	>40 or 20–25
$\mathrm{N}(\mathrm{N}_{2}H^{+})~(cm^{-2})$	1014	3×10^{13}	10 ¹³
Typical Ratio	1 ± 0.2	1 ± 0.2	2.2 ± 0.8

 Table 2
 High-resolution Parameters

Cores in the Filaments

Major-Axis Analysis

Main Filament

East Filament

Major-Axis Analysis

Main Filament

East Filament

Major-Axis Analysis

Main Filament

East Filament

Conclusions

- Moment 0 map in N₂H⁺ (3-2) reveals filamentary structure with typical widths of ~0.02 to 0.03 pc.
- Velocity structure in N₂H⁺ (3-2) may indicate a global collapse scenario.
- From (3-2)/(1-0) intensity ratio maps,
 - Large scale analysis shows a high ratio in the eastern edge

→ External heating $(T_{kin} \sim 31 - 37 K)$

• High resolution analysis shows a low ratio in the filaments

 \rightarrow High density and low temperature ($n_{H_2} \sim 10^7 \ cm^{-3}$ and $T_{kin} \sim 15K$)

- Velocity along the minor-axis of the filaments do not show systematic gradient. Each core has its own rotational axis.
- Major-axis analysis on the filaments may suggest a different core formation mechanism from the ones in typical low-mass regions.

Thank you for your attention!

M42 and Orion KL

