

Revealing the Drivers of CO-to-H₂ **Conversion Factor Variation and its Impact on Star Formation Efficiency**

Yu-Hsuan (Eltha) Teng

Collaborators: Karin Sandstrom, Jiayi Sun, Adam Leroy, Alberto Bolatto, I-Da Chiang, Munan Gong, Antonio Usero, Daizhong Liu, Eva Schinnerer, Frank Israel, Diederik Kruijssen, Andreas Schruba, Simon Glover, Ralf Klessen, Miguel Querejeta, Frank Bigiel, Guillermo Blanc, Brent Groves, Erik Rosolowsky, J.-D. Smith, Fabian Walter, *PHANGS Team*

About my research

Star formation and molecular gas in spiral galaxies

- Dense gas structure and environment (N₂H⁺, HCN, HCO⁺...)
 - Filaments and massive star formation in Orion Molecular Cloud (Teng & Hirano 2020)
 - Dense gas fraction and star formation efficiency across nearby galaxies (PHANGS collaboration)

arXiv:2310.16037

• Molecular gas properties and the CO-to-H₂ conversion factor (α_{CO})

- Multi-line CO isotopologue modeling in nearby galaxy centers (Teng et al. 2022)
- Identified physical drivers and observational tracers of α_{CO} (Teng et al. 2023)
- Star formation efficiency and stellar feedback
 - SFE variations across nearby galaxies under new α_{CO} prescriptions (Teng et al., submitted)
 - Systematic study of warm H₂ and stellar feedback in galaxy centers (*Teng et al., in prep*)

About my research

Star formation and molecular gas in spiral galaxies

- Dense gas structure and environment (N₂H⁺, HCN, HCO⁺...)
 - Filaments and massive star formation in Orion Molecular Cloud (Teng & Hirano 2020)
 - Dense gas fraction and star formation efficiency across nearby galaxies (PHANGS collaboration)

arXiv:2310.16037

- Molecular gas properties and the CO-to-H₂ conversion factor ($\alpha_{\rm CO}$)
 - Multi-line CO isotopologue modeling in nearby galaxy centers (Teng et al. 2022)
 - Identified physical drivers and observational tracers of α_{CO} (Teng et al. 2023)
- Star formation efficiency and stellar feedback
 - SFE variations across nearby galaxies under new α_{CO} prescriptions (Teng et al., submitted)
 - Systematic study of warm H₂ and stellar feedback in galaxy centers (*Teng et al., in prep*)

Motivation

- Stars are formed in molecular gas
 - Amount of molecular gas + star formation efficiency
 - molecular Kennicutt-Schmidt relation

(Kennicutt 1998)

 $\Sigma_{SFR} \propto \Sigma_{gas}^{1.4}$

3

Tracing molecular gas

• Molecular gas mass measurement: convert CO emission to total H₂

 $\Rightarrow \text{CO-to-H}_2 \text{ conversion factor } \alpha_{\text{CO}} \equiv \frac{M_{\text{mol}}}{L_{\text{CO}(1-0)}} = \frac{\Sigma_{\text{mol}}}{I_{\text{CO}(1-0)}} \left(\frac{M_{\odot}}{K \text{ km s}^{-1} \text{ pc}^2} \right)$

• Empirical mass-to-light ratio, with $\alpha_{\rm CO} \sim 4.4$ in MW disk

Tracing molecular gas

• Molecular gas mass measurement: convert CO emission to total H₂

 $\Rightarrow \text{CO-to-H}_2 \text{ conversion factor } \alpha_{\text{CO}} \equiv \frac{M_{\text{mol}}}{L_{\text{CO}(1-0)}} = \frac{\Sigma_{\text{mol}}}{I_{\text{CO}(1-0)}} \left(\frac{M_{\odot}}{\text{K km s}^{-1} \text{ pc}^2}\right)$

- Empirical mass-to-light ratio, with $\alpha_{\rm CO} \sim 4.4$ in MW disk
- But *α*_{CO} varies with molecular gas properties!
 - metallicity, CO/H₂ abundance
 - density, temperature & velocity dispersion
 - low-J CO lines are usually optically thick!

 \rightarrow escaped CO emission due to high velocity dispersion

Regions with different α_{co}

- Low-metallicity galaxies
 - High $\alpha_{\rm CO}$ due to the lack of dust shielding
- (Ultra-)luminous infrared galaxies (U/LIRGs)
 - Many of them are galaxy mergers
 - Gas being warmer, denser, altered dynamics/virial balance

Regions with different α_{co}

- Low-metallicity galaxies
 - High $\alpha_{\rm CO}$ due to the lack of dust shielding
- (Ultra-)luminous infrared galaxies (U/LIRGs)
 - Many of them are galaxy mergers
 - Gas being warmer, denser, altered dynamics/virial balance
- Galaxy centers
 - α_{CO} in our Galactic Center is 3–10x lower than in the disk
 - ~10x lower α_{CO} found in many **normal galaxy centers**
 - gas concentrations driven by bars and/or spiral arms?
 - higher excitation, turbulence, and/or dynamical process?
 - → emissivity-dependent terms are important!

Why is α_{co} important?

- Basis of measuring molecular gas mass
- Tied to physical conditions of molecular gas
- $\rightarrow \alpha_{\rm CO}$ directly impacts star formation properties
 - Virial parameter $\alpha_{vir} \equiv \frac{2T}{U} \propto \frac{\sigma^2}{M_{mol}}$
 - Star formation efficiency $\varepsilon_{\rm eff}$ = SFR / $M_{\rm mol}$
 - Gas depletion time $\tau_{\rm dep}$ = 1/ $\varepsilon_{\rm eff}$ = $M_{\rm mol}$ / SFR
 - Cloud free-fall time $\tau_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho_0}}$, where $\rho_0 \propto \frac{M_{mol}}{R^3}$

• Turbulence pressure
$$P_{\text{turb}} = \rho \sigma^2 \sim \frac{M_{mol} \sigma^2}{2R}$$

Why is α_{co} important?

- Basis of measuring molecular gas mass
- Tied to physical conditions of molecular gas
- $\rightarrow \alpha_{\rm CO}$ directly impacts star formation properties
 - Virial parameter $\alpha_{vir} \equiv \frac{2T}{U} \propto \frac{\sigma^2}{M_{mol}}$
 - Star formation efficiency $\varepsilon_{\rm eff}$ = SFR / $M_{\rm mol}$
 - Gas depletion time $\tau_{dep} = 1 / \epsilon_{eff} = M_{mol} / SFR$
 - Cloud free-fall time $\tau_{\rm ff} = \sqrt{\frac{3\pi}{32G\rho_0}}$, where $\rho_0 \propto \frac{M_{mo}}{R^3}$
 - Turbulence pressure $P_{\text{turb}} = \rho \sigma^2 \sim \frac{M_{mol} \sigma^2}{2R}$

Measuring α_{CO}

Estimate the total molecular gas mass and then compare with CO emission

- Optically thin tracers
 - *Dust* require assumptions on dust-to-gas ratios
 - CO isotopologues require knowledge of density, temperature, and isotopic abundances

Gamma-ray emission

• Traces collisions/scattering between cosmic ray and interstellar matter

🕨 Virial methods

- Use the size and line width to derive the virial mass $(M_{vir} \propto \sigma^2 R/G)$
- \mathcal{I} *Kennicutt-Schmidt relation* infer Σ_{mol} from the measured Σ_{SFR}
 - Assumes a constant star formation efficiency

Measuring α_{CO}

Estimate the total molecular gas mass and then compare with CO emission

Optically thin tracers

- *Dust* require assumptions on dust-to-gas ratios
- CO isotopologues require knowledge of density, temperature, and isotopic abundances

Gamma-ray emission

Traces collisions/scattering between cosmic ray and interstellar matter
 → low sensitivity, only possible in the Local Group

b Virial methods

• Use the size and line width to derive the virial mass $(M_{vir} \propto \sigma^2 R/G)$

 \rightarrow requires cloud-scale resolution & clouds likely not virialized

- \mathcal{I} *Kennicutt-Schmidt relation* infer Σ_{mol} from the measured Σ_{SFR}
 - Assumes a constant star formation efficiency → still under debate

ALMA multi-line observations

- NGC 3351, NGC 3627, NGC 4321

 → nearby barred spiral galaxies with low α_{C0} in the central kpc (e.g., Sandstrom+ 2013, Israel 2020)
- ALMA Band 3, 6, 7
 - Multi-line CO isotopologues
 - ¹²CO (1-0) and (2-1)
 - ¹³CO (2-1) and (3-2)
 - C¹⁸O (2-1) and (3-2)
 - central ~2 kpc regions
 - angular resolution: 2'' (~100 pc)

(PHANGS-ALMA+HST)

Multi-line modeling

non-LTE radiative transfer + Bayesian likelihoods

(Teng+ 2022)

$a_{\rm CO}$ distribution

$$\alpha_{\rm CO} = \frac{M_{\rm mol}}{L_{\rm CO(1-0)}} \left(\frac{M_{\odot}}{K \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{pc}^2} \right)$$
$$= \frac{1.36 \,m_{\rm H_2}(M_{\odot}) \,N_{\rm CO}(\mathrm{cm}^{-2}) \,\Phi_{\rm bf} \,A(\mathrm{cm}^2)}{I_{\rm CO(1-0)}(K \,\mathrm{km}\,\mathrm{s}^{-1}) \,A\,(\mathrm{pc}^2)} \cdot \frac{3 \times 10^{-4}}{x_{\rm CO}}$$

Physical drivers of α_{CO}

- Strong correlation between $\alpha_{\rm CO}$ and CO optical depth $\tau_{\rm CO}$ in optically thick regions (~80%)
- To the second order, α_{CO} anti-correlates with gas temperature T_k (~20%)

$$\rightarrow \log \left[\frac{\alpha_{\rm CO}}{M_{\odot}/(\mathrm{K \ km \ s^{-1} \ pc^2})} \right]$$
$$= 0.78 \log[\tau_{\rm CO(2-1)}] - 0.18 \log\left(\frac{T_{\rm k}}{\mathrm{K}}\right) - 0.84$$

• Next step: observational tracers for α_{co} ?

Potential α_{CO} tracers

- Low $\alpha_{\rm CO}$ and $\tau_{\rm CO}$ in NGC 3351 inflows
 - escaped CO emission due to very low $\tau_{\rm CO}$
 - increased CO/¹³CO line ratio and line width

Potential α_{co} tracers

- Low $\alpha_{\rm CO}$ and $\tau_{\rm CO}$ in NGC 3351 inflows
 - escaped CO emission due to very low $\tau_{\rm CO}$
 - increased CO/¹³CO line ratio and line width

- The CO/¹³CO (2-1) ratio mainly reflects $\tau_{\rm CO}$
- Higher velocity dispersion in barred galaxy centers decreases $\tau_{\rm CO}$ and thus $\alpha_{\rm CO}$ since $\tau_{\rm CO} \propto N_{\rm CO}/\Delta v$

Compare with simulations

- (M)HD simulation of galaxy/ISM at pc-scales (Narayanan+ 2012, Gong+ 2020, Hu+ 2022)
- Focus on Galactic disk-like or low metallicity environments
- Overestimate α_{co} in galaxy centers
 - \rightarrow Gas inflows & turbulence effects are important!

A new Δv -based α_{CO} prescription

- We have found consistent α_{CO} Δv dependence across more galaxies!
 - Dust-based α_{CO} measurements at 2-kpc resolution (*Chiang+ in prep*)
 - Kpc-averaged Δv measured at 90/150-pc scale from PHANGS (Sun+ 2022)
 - 12 barred and non-barred galaxies out to $R_{\rm gal} \sim 10~{\rm kpc}$

A new Δv -based α_{CO} prescription

- We have found consistent α_{CO} Δv dependence across more galaxies!
 - Dust-based α_{CO} measurements at 2-kpc resolution (*Chiang+ in prep*)
 - Kpc-averaged Δv measured at 90/150-pc scale from PHANGS (Sun+ 2022)
 - 12 barred and non-barred galaxies out to $R_{\rm gal} \sim 10~{\rm kpc}$

Impact on star formation efficiency

- Tested on 65 galaxies from PHANGS, and compared to MW α_{CO} :
 - Enhanced SFE towards galaxy centers and high- Σ_{mol} regions
 - Σ_{mol} overestimated by ~5x in galaxy centers with MW α_{CO}
 - \rightarrow choice of α_{CO} greatly affects our understanding of galactic-scale star formation!

Barred vs. non-barred centers

- Derived molecular gas depletion time using different α_{CO} prescriptions:
 - Both MW and Z-based α_{CO} result in 3-5x longer t_{dep} in galaxy centers overall
 - Bolatto+13 α_{CO} predicts short t_{dep} in galaxy centers similar to our average
 - Only our prescription reveals ~3x shorter t_{dep} in barred galaxy centers

Future work

- Drivers of SFE variations
 - gas structure, density, dynamical effects (from e.g., bars, turbulence, shocks)
 - JWST revealing warm H₂ gas and embedded SF

Future work

- Drivers of SFE variations
 - gas structure, density, dynamical effects (from e.g., bars, turbulence, shocks)
 - JWST revealing warm H₂ gas and embedded SF
- Impact on other cloud/SF properties
 - SFE per cloud free-fall or orbital time scales
 - virial parameter, turbulent pressure, ISM equilibrium

credit: K. Kreckel

Future work

- Drivers of SFE variations
 - gas structure, density, dynamical effects (from e.g., bars, turbulence, shocks)
 - JWST revealing warm H₂ gas and embedded SF
- Impact on other cloud/SF properties
 - SFE per cloud free-fall or orbital time scales
 - virial parameter, turbulent pressure, ISM equilibrium
- $\alpha_{\rm CO}$ calibration based on various line ratios
 - ¹²CO/¹³CO dependence also tracing CO opacity
 - \rightarrow similar dependence seen in mergers!
 - \rightarrow ¹³CO line mapping across active/normal galaxies
 - CO 2-1/1-0 ratio tracing temperature effect

credit: K. Kreckel

THANK YOU!

Lower α_{co} in galaxy centers

5-15x lower α_{CO} than MW disk

New tracers for α_{co}

velocity dispersion & CO/¹³CO ratio

Main drivers of α_{co}

CO optical depth & gas temperature

Enhanced SFE in barred centers

revealed with our new, Δv -based a_{CO}

Contact me: yuteng@ucsd.edu https://elthateng.github.io/

Papers: Teng et al. 2022, *ApJ*, 925, 72; Teng et al. 2023, *ApJ*, 950, 119; Teng et al. 2023, *arXiv:2310.16037*

