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ABSTRACT
We present radial profiles of UV-to-IR surface brightness, estimate stellar mass surface density (Σ⋆)16

and star formation rate surface density (ΣSFR), and predict the CO-to-H2 conversion factor (αCO) for17

over 5,000 local galaxies with stellar mass M⋆ ≥ 109.3 M⊙. We build these profiles and measure galaxy18

half-light radii using GALEX and WISE images from the z0MGS program, with special care given19

to highly inclined galaxies. From the UV-to-IR surface brightness profiles, we estimate Σ⋆ and ΣSFR20

and use them to predict αCO with state-of-the-art empirical prescriptions. We validate our (kpc-scale)21

αCO predictions against observational estimates, finding the best agreement when accounting for CO-22

dark gas as well as CO emissivity and excitation effects. The CO-dark correction plays a primary23

role in lower-mass galaxies, whereas CO emissivity and excitation effects become more important in24

higher-mass and more actively star-forming galaxies, respectively. We compare our estimated αCO25

to observed variations in galaxy-integrated SFR to CO luminosity ratio as a function of M⋆. A26

large compilation of literature data suggests that star-forming galaxies with M⋆ = 109.5−11 M⊙ show27

strong anti-correlations of SFR/L′
CO(1−0) ∝ M−0.29

⋆ and SFR/L′
CO(2−1) ∝ M−0.40

⋆ . The estimated28

αCO trends explain only ≈1/3 of these systematic SFR/L′
CO variations, such that the remaining 2/329

are attributable to changes in the molecular gas depletion time (shorter in lower-mass star-forming30

galaxies). We publish all data products from this work, including galaxy sizes, UV-to-IR surface31

brightness profiles, Σ⋆, ΣSFR, and αCO estimates.32

1. INTRODUCTION33

Low-J CO rotational transition lines are among the34

most widely used tracers of molecular gas in galaxies (see35

reviews by Young & Scoville 1991; Fukui & Kawamura36

2010; Heyer & Dame 2015; Saintonge & Catinella 2022).37

In the local universe, integrated CO measurements exist38

for thousands of galaxies (e.g., Young et al. 1995; Lisen-39

feld et al. 2011; Cicone et al. 2017; Saintonge et al. 2017;40

Colombo et al. 2020; Wylezalek et al. 2022), resolved41

CO observations cover hundreds of galaxies (e.g., Helfer42

et al. 2003; Kuno et al. 2007; Leroy et al. 2009; Bolatto43

et al. 2017; Sorai et al. 2019; Lin et al. 2020; Brown44

et al. 2021), and there are now over 100 high-resolution45
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CO maps that isolate or even resolve individual molec-46

ular clouds across galaxies (e.g., Donovan Meyer et al.47

2013; Leroy et al. 2021a; Williams et al. 2023, J. Sun48

et al., in preparation). These observations have shaped49

our understanding of the overall abundance, large-scale50

distribution, and small-scale organization of cold molec-51

ular gas, which is the direct fuel for star formation and52

a key driver of galaxy evolution.53

As the collective footprint of CO observations has54

grown, our understanding of how to infer molecular gas55

mass from CO emission has also improved (see Bolatto56

et al. 2013; Schinnerer & Leroy 2024). Many empirical57

studies made key advances by comparing CO emission58

to independent gas mass tracers, including far-IR dust59

emission (e.g., Leroy et al. 2011; Sandstrom et al. 2013;60

Yasuda et al. 2023; Chiang et al. 2024), or by model-61

ing multi-J CO and CO isotopologue lines to determine62
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the underlying physical conditions in the gas (e.g., Israel63

2020; Teng et al. 2022, 2023; He et al. 2024). Numer-64

ical simulations have also provided important insights65

on this topic by implementing realistic treatments of66

CO chemistry and radiative transfer while accounting67

for observational resolution and sensitivity limits (e.g.,68

Glover & Clark 2012; Narayanan et al. 2012; Gong et al.69

2020; Hu et al. 2022).70

Thanks to these works, we have now established sev-71

eral key trends in the CO-to-H2 conversion factor, αCO,72

as functions of local gas properties. For example, αCO73

anti-correlates strongly with gas-phase metallicity, likely74

due to more abundant “CO-dark” gas in lower metallic-75

ity environments (e.g., Glover & Mac Low 2011; Accurso76

et al. 2017; Gong et al. 2020; Hu et al. 2022). αCO also77

depends on gas temperature and optical depth, which78

affect the emissivity of the gas. These variations ap-79

pear to correlate with the CO line width (e.g., Teng80

et al. 2024), line intensity (e.g., Narayanan et al. 2012;81

Gong et al. 2020), and other environmental properties82

(e.g., stellar or total mass surface density; see Bolatto83

et al. 2013; Chiang et al. 2024). One can therefore use84

these more accessible quantities as empirical proxies for85

CO emissivity variations when direct constraints are not86

available. Besides, one may also need to account for CO87

excitation effects that alter the ratio between different88

CO transitions and thus their corresponding αCO in re-89

lation to each other (e.g., Yajima et al. 2021; Leroy et al.90

2022; den Brok et al. 2023a; Keenan et al. 2024a; den91

Brok et al. 2025). As with other factors affecting the92

CO emissivity, excitation variations appear to correlate93

with local conditions, especially the surface density of94

recent star formation.95

These studies yield prescriptions that predict αCO96

from directly observable quantities, including metal-97

licity, the surface densities of stellar mass and recent98

star formation rate (SFR), and the cloud-scale gas sur-99

face density or velocity dispersion. Obtaining estimates100

of these input variables requires ancillary data beyond101

just CO mapping, e.g., near-IR images tracing stellar102

mass, high-resolution millimeter line observations trac-103

ing gas kinematics, and/or metallicity estimates. How-104

ever, not all galaxies targeted for CO observations have105

such datasets readily available, and many modern CO106

studies still assume a constant αCO when converting CO107

emission to molecular gas mass. Unfortunately, this in-108

troduces systematic biases and can substantially affect109

the inferred relationships between gas mass and star for-110

mation (Bolatto et al. 2013; also see Sun et al. 2023;111

Teng et al. 2024; Leroy et al. 2025).112

This paper aims to address this problem by provid-113

ing αCO predictions for thousands of local galaxies.114

We follow current best practices (Schinnerer & Leroy115

2024) and apply the aforementioned empirical αCO cal-116

ibrations homogeneously to the z=0 Multiwavelength117

Galaxy Synthesis (z0MGS; Leroy et al. 2019) dataset.118

This atlas includes star-forming galaxies more massive119

than the LMC out to d ≈ 50 Mpc, and so covers almost120

all targets in various local universe CO mapping cam-121

paigns, including COMING (Sorai et al. 2019), HERA-122

CLES (Leroy et al. 2009), the NRO Atlas (Kuno et al.123

2007), PHANGS–ALMA (Leroy et al. 2021a,b), as well124

as VERTICO (Brown et al. 2021) and its high-resolution125

counterpart MAUVE–ALMA (J. Sun et al., in prepara-126

tion). Together with the αCO predictions, we produce127

a variety of intermediate data products, including new128

estimates of galaxy effective radii and radial profiles of129

UV-to-IR surface brightness, stellar mass surface den-130

sity, and SFR surface density. These intermediate cal-131

culations can also serve as a basis for more refined αCO132

estimates as αCO prescriptions and metallicity measure-133

ments improve in the future.134

Beyond providing αCO estimates for various targets135

and surveys, this work also aims to offer a population-136

level view of αCO variations based on current pre-137

scriptions. Specifically, we examine how αCO changes138

as functions of galactocentric radius, galaxy-integrated139

stellar mass, and star formation rate. This allows us to140

predict how the ratio of star formation rate to CO lu-141

minosity, SFR/L′
CO, should vary among galaxies purely142

due to αCO variations. High values of SFR/L′
CO in low-143

mass, low-metallicity galaxies have been observed for144

decades (e.g., Young & Scoville 1991; Saintonge et al.145

2011; Schruba et al. 2012; Genzel et al. 2012; Leroy et al.146

2013; Hunt et al. 2020), but the degree to which such147

variations reflect real changes in molecular gas deple-148

tion time (tdep ≡ Mmol/SFR) or merely αCO is often149

unclear. Our synthetic calculations provide a basis for150

interpreting such observations.151

The structure of this paper is as follows. Section 2152

describes the UV and IR datasets used in this work as153

well as the procedures for constructing surface bright-154

ness radial profiles, converting them into physical prop-155

erties, and deriving αCO predictions based on empiri-156

cal prescriptions. Section 3 validates our αCO predic-157

tions against observational estimates for various sub-158

sets of galaxies in the literature. Section 4 presents key159

population-level trends in the αCO predictions and ex-160

amines their physical origins. Section 5 discusses im-161

plications for galaxy-integrated molecular gas depletion162

times. We summarize our main findings and describe163

the data products in Section 6.164

2. DATA & METHODS165

We work with an extensive sample of local galaxies166

selected from the z0MGS sample (Leroy et al. 2019,167

hereafter L19). This parent sample includes over 15,000168

galaxies in the HyperLEDA database (Makarov et al.169

2014), most of which have B -band absolute magnitudes170

MB ≲−18 mag (i.e., comparable to or brighter than171

the LMC) and distances d≲ 50 Mpc (see figure 19 in172

L19). Thanks to z0MGS, these galaxies have tabulated173

global properties as well as science-ready GALEX UV174

and WISE near-/mid-IR images, which allow us to es-175
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Figure 1. Our data processing workflow, from reduced GALEX and WISE images to αCO predictions. Methodological details
for the three major steps (image processing and radial profile creation, physical property estimation, and conversion factor
prescription) are described in Sections 2.1-2.2, 2.3, and 2.4 respectively.

timate parameters such as stellar mass surface density176

and SFR surface density that are relevant to CO-to-H2177

conversion factor prescriptions.178

From the z0MGS parent sample, we select galaxies179

for which it would be possible to estimate the CO(1–0)-180

to-H2 and CO(2–1)-to-H2 conversion factors following181

Schinnerer & Leroy (2024, hereafter SL24) and for which182

we expect those prescriptions to apply. Specifically,183

we select galaxies with estimated global stellar mass184

M⋆ > 109.3 M⊙ (i.e., comparable to or above LMC185

mass), similar to those galaxies used for calibrating the186

conversion factor prescriptions (see references in SL24).187

We also require these galaxies to have known inclina-188

tion and position angles because our analysis framework189

requires calculating galactocentric radius (see subsec-190

tion 2.2 below). We omit M31 and M33 partly due to191

challenges in processing their data given their enormous192

sky footprints, and partly because each already has their193

own conversion factor literature, which has in some cases194

informed the prescriptions we use (e.g., Leroy et al. 2011;195

Smith et al. 2012; Gratier et al. 2017; Williams et al.196

2019; Forbrich et al. 2020; Viaene et al. 2021). These197

selection criteria yield a total of 10,657 galaxies.198

For each galaxy, we use UV images from GALEX199

(Martin et al. 2005) and IR images from WISE (Wright200

et al. 2010) to create UV and IR surface brightness ra-201

dial profiles. We then convert these observed quantities202

into physical properties and use them to predict the CO-203

to-H2 conversion factors. This data processing workflow204

is illustrated in Figure 1, and the individual steps are205

detailed in the following subsections.206

2.1. UV and IR Images207

We make use of GALEX FUV and NUV images208

(154 and 231 nm) as well as WISE1 through WISE4209

band images (3.4, 4.6, 12, and 22 µm) that were pro-210

cessed by the z0MGS project (L19). These images were211

background-subtracted and convolved to Gaussian point212

spread functions (PSFs) of 7.′′5 (possible for all bands213

except WISE4 22 µm) and 15′′ (possible for all bands).214

The 15′′ resolution images reach typical 1σ noise lev-215

els of ∼1.5 × 10−4 MJy sr−1 in the GALEX bands,216

∼2.5× 10−3 MJy sr−1 in the WISE1 3.4 µm band, and217

∼1.3× 10−1 MJy sr−1 in the WISE4 22 µm band.218

We also use star and galaxy masks published by L19 to219

mask pixels contaminated by bright foreground stars or220

other galaxies in the field. However, we do not apply the221

masks close to galaxy centers because nuclear features222

in galaxies can sometimes be misidentified as stars and223

flagged in the masks. Based on visual inspections of224

the images and masks, we set the overriding area to be225

within 0.15×R25 of the galaxy center or within one PSF226

from the galaxy center, whichever is larger.227

For a subset of galaxies either located close to the228

Galactic plane or having close companion galaxies, a229

substantial fraction (>30%) of their UV/IR images can230

be masked, making it impractical to extract reliable231

measurements. This issue is most severe in the WISE1232

band (affecting ∼3,000 galaxies) but becomes much less233

concerning in the GALEX FUV and WISE4 bands (only234

∼200 galaxies). We omit these galaxies in the problem-235

atic bands in all following analyses (also see Table 1).236

2.2. UV and IR Surface Brightness Profiles237

We build surface brightness radial profiles for each238

galaxy in each of the GALEX and WISE bands at both239

7.′′5 and 15′′ resolution (which translates to ∼1−3 kpc240

physical scale for most galaxies). For galaxies with in-241

clination angle i ≤ 75◦, we build the radial profiles di-242

rectly by generating a series of radial bins according to243
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Figure 2. The WISE1 band image (left & middle panels) and surface brightness radial profiles (right panel) for PGC 40153
(a.k.a. NGC 4321, i = 27◦), as an example of our radial profile construction techniques. A set of elliptical rings (orange
dotted lines) in the left panel represent galactocentric radius (rgal) bins, in which we directly compute the mean/median surface
brightness. A set of long stripes (red rectangles) in the middle panel represent the regions used for “stripe integral” (Warmels
1988), an alternative method for deriving radial profiles that is applicable to even edge-on galaxies (see subsection 2.2). For
visual clarity, the densities of bins/stripes are reduced by a factor of four in both panels. Both methods account for masked area
due to foreground stars or other galaxies (white ellipses). As shown by the right panel, the radial profiles derived with both
methods agree well out to large rgal, even after the stripe integral-based results drop below 3σ significance (red dotted curve).

the inclination and position angle of the galaxy (see Fig-244

ure 2 left panel). The radial bin width matches the half-245

width-half-maximum (HWHM) of the Gaussian PSF to246

appropriately sample the corresponding image. The out-247

ermost bin reaches at least 2 r25 for each galaxy, and we248

require a minimum of 10 radial bins to have reasonable249

coverage even for the smallest galaxies. We then cal-250

culate the mean and median surface brightness within251

each bin as well as the corresponding uncertainty via252

standard error propagation. Finally, we multiply these253

numbers by cos i to derive inclination-corrected surface254

brightness measurements and errors.255

For galaxies with inclination i > 75◦, direct radial bin-256

ning is no longer reliable — the exact inclination angle257

is challenging to measure in this regime, and the surface258

brightness profile becomes largely unresolved along the259

galactic minor axis in many cases. In these cases, we in-260

stead use the “stripe integral” technique (Warmels 1988)261

to reconstruct the radial surface brightness profiles. In262

short, we calculate integrated flux densities within a se-263

ries of “integration stripes” that align with the galactic264

minor axis and tile along the major axis (see Figure 2265

middle panel). Assuming an axisymmetric disk and op-266

tically thin emission, we use this set of flux density mea-267

surements to derive the radial surface brightness profile268

via an inverse Abel transform. This method is described269

in detail in Appendix A.270

The stripe integral approach does not require knowl-271

edge of the galaxy inclination angle and can be applied272

to edge-on systems as long as all the assumptions hold.273

As a check, we compare surface brightness profiles mea-274

sured from direct radial binning to those inferred with275

the stripe integral method for relatively face-on galaxies276

(see Figure 2 right panel for an example). We find that277

the two approaches yield consistent results for the vast278

majority of targets. Inconsistent radial profiles typically279

occur in cases where: (a) the cataloged galaxy inclina-280

tion and/or position angle are potentially wrong, (b)281

the surface brightness profile is only marginally resolved282

in the given band, or (c) the signal-to-noise (S/N) ra-283

tio of the detection becomes low, especially far into the284

galaxy outskirts. While there is no easy solution in the285

first case, in the latter two cases we either flag the galaxy286

(when it is unresolved) or the radial bins with low S/N287

ratio to avoid unreliable measurements in subsequent288

analyses (see subsubsection 2.2.1 below).289

2.2.1. Galaxy Half-light Radii290

From the surface brightness radial profiles measured291

with either direct radial binning or stripe integral, we de-292

rive the half-light radius (or effective radius, r50) of each293

galaxy in each UV/IR band. This involves calculating294

the cumulative flux distribution as a function of galac-295

tocentric radius and determining the radius at which it296

reaches 50% of the galaxy total flux. We use the total297

fluxes reported in L19 and note that the numbers vary298

by only ∼0.02 dex with mildly different methodological299

choices (such as the area for overriding star masks or300

calculating the cumulative flux, see subsection 2.1–2.2).301
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Table 1. Number of Galaxies with Key Measurements

Sample Description Nface-on/Ntotal

z0MGS parent sample (Leroy et al. 2019) −/15, 748

Full sample considered in this work (§2) 6, 868/10, 657

Galaxies with images & surface brightness profiles (§2.1–2.2)

... for GALEX FUV (154 nm) 4, 826/7, 554

... for GALEX NUV (231 nm) 4, 747/7, 415

... for WISE1 (3.4µm) 4, 897/7, 613

... for WISE2 (4.6µm) 5, 175/8, 053

... for WISE3 (12µm) 6, 290/9, 766

... for WISE4 (22µm) 6, 708/10, 416

Galaxies with physical measurements or predictions

WISE1 half-light radius (§2.2.1) 4, 848/7, 279

Stellar & SFR surface density profiles (§2.3) 3, 956/5, 300

CO-to-H2 conversion factor profile (§2.4) 3, 919/5, 244

Note— Nface-on counts galaxies with inclination i ≤ 75◦, for
which we have measurements based on direct radial binning;
Ntotal counts all galaxies with either direct radial binning or
stripe integral-based measurements (see §2.2).

For galaxies with sizes comparable to or smaller than302

the image resolution, the calculated r50 can be biased303

high because the galaxy radial profiles are not well re-304

solved. To address this issue, we generate mock galaxies305

with varying sizes and inclination angles, convolve their306

images to the typical data resolution we work with, mea-307

sure r50 with the method described above, and compare308

those measurements with the ground truth values (see309

Appendix B for more details). This exercise produces a310

correction factor that depends on the ratio of the mea-311

sured radius to the PSF size, r50, obs/θPSF, and for radial312

profiles (but not stripe integral-based sizes) the galaxy313

inclination angle. We calculate this factor for each pro-314

file and scale r50, obs accordingly. This yields our best315

estimate r50 corrected for the effects of resolution.316

We flag a small subset of galaxies whose r50 measure-317

ments are deemed unreliable for one of the following rea-318

sons: (1) the surface brightness profile drops below 3σ319

significance (per bin) before reaching r50, which leads to320

large error on the r50 measurement; (2) the inferred r50321

lies within the first radial bin, which means their surface322

brightness profile is completely unresolved; or (3) the323

galaxy is marginally resolved, but the estimated resolu-324

tion bias correction on r50 is larger than a factor of 2, in325

which case the error on r50 would be too large after cor-326

rection (see Appendix B). The fraction of flagged galax-327

ies varies across different bands and differs between the328

radial binning-based sizes and the stripe integral-based329

ones. For the WISE1 band at 7.′′5 resolution, in total330

< 10% of galaxies with stripe integral-based profiles are331

flagged, and < 1% of those with radial binning-based332

profiles are flagged (see Table 1).333

2.3. From Observed Quantities to Physical Properties334

Based on the measured surface brightness radial pro-335

files and half-light radii for each galaxy, we calculate the336

star formation rate (SFR) surface density, stellar mass337

surface density, and gas-phase metallicity, all of which338

are input parameters for the SL24 conversion factor pre-339

scription. We summarize the key steps below and refer340

interested readers to L19 and Sun et al. (2022) for de-341

tailed descriptions.342

We derive SFR surface densities (ΣSFR) from GALEX343

UV and WISE mid-IR surface brightnesses closely fol-344

lowing L19 (see Table 7 and appendix therein). By de-345

fault, we combine GALEX FUV (154 nm) with WISE4346

(22 µm) to trace both exposed and obscured star for-347

mation. For targets without GALEX FUV data, we348

combine GALEX NUV (231 nm) with WISE4 whenever349

NUV is available. We resort to a WISE4-only calibra-350

tion when neither FUV nor NUV data is available. Due351

to the use of WISE4 data, our ΣSFR results are only352

estimated at 15′′ resolution.353

We derive stellar mass surface densities (Σ⋆) based354

on WISE1 3.4 µm surface brightness profiles (I3.4µm)355

at 7.′′5 resolution and a radially varying stellar mass-to-356

light (M/L) ratio. We estimate the latter from the local357

ΣSFR-to-I3.4µm ratio, following an empirical calibration358

presented in L19 (Table 6 therein). This method ac-359

counts for M/L trends associated with varying stellar360

population ages across galaxies.361

We further apply a S/N > 3 threshold (per radial bin)362

on the derived ΣSFR and Σ⋆ radial profiles, so that low-363

significance measurements are considered non-detections364
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instead. Given this threshold, a fraction of galaxies do365

not have significant ΣSFR or Σ⋆ measurements in any366

radial bins. This is mainly due to the limited sensitivity367

of the WISE4 images, which are directly used for ΣSFR368

and indirectly affects the M/L ratio and therefore Σ⋆.369

Among the galaxies with measured surface brightness370

profiles in all relevant GALEX and WISE bands, 5,300371

galaxies have significant ΣSFR and Σ⋆ measurements;372

3,956 out of these 5,300 targets have low or moderate373

inclination (i≤ 75◦) and therefore have direct radial bin-374

ning measurements (see subsection 2.2).375

For gas-phase metallicity (Z), since direct measure-376

ments are not available for the majority of galaxies in our377

sample, we rely on empirical scaling relations to estimate378

metallicity following Sun et al. (2020, 2022). Specifi-379

cally, we use the galaxy global stellar mass published in380

L19 to estimate the metallicity at r= r50 in each galaxy,381

following the mass-metallcity relation measured by the382

SAMI survey (Sánchez et al. 2019). We then use our383

measured r50 in WISE1 band from subsection 2.2 and a384

radial metallicity gradient of −0.1 dex/r50 (from CAL-385

IFA; Sánchez et al. 2014) to derive the implied metallic-386

ity elsewhere in the galaxy. For these calculations, we387

adopt the O3N2 metallicity calibration (Pettini & Pagel388

2004) and a solar value of 12 + log (O/H) = 8.69 dex389

(Asplund et al. 2009).390

This approach allows us to obtain uniform metallicity391

estimates across the full sample. Considering that the392

z0MGS parent sample covers similar galaxy populations393

as the SAMI and CALIFA surveys (in terms of stellar394

mass range etc.), our metallicity estimates should sta-395

tistically match the average trends seen in IFU-based396

metallicity measurements across many galaxies. That397

being said, there are appreciable galaxy-to-galaxy vari-398

ations in both the mass-metallicity relation and the ra-399

dial metallicity gradient (e.g., see Kreckel et al. 2019;400

Sánchez 2020), so that we do not necessarily expect401

our scaling relation-based estimates to perfectly match402

the observed trends in individual galaxies. For stud-403

ies that focus on smaller sets of galaxies with uniform404

optical IFU coverage (e.g., EDGE-CALIFA, PHANGS,405

MAUVE, KILOGAS; Sánchez et al. 2013; Kreckel et al.406

2019; Catinella et al. 2025), it is possible to improve407

upon our approach by directly incorporating emission408

line-based metallicity measurements.409

2.4. Conversion Factor Prescriptions410

We predict CO-to-H2 conversion factors for both411

CO(1–0) and CO(2–1) lines with a prescription recom-412

mended by SL24. This prescription involves three terms413

that account for the effects of CO-dark gas, CO emis-414

sivity variations, and CO excitation effects, respectively.415

The “CO-dark” term is parameterized as a function of416

the gas-phase metallicity Z:417

f(Z) = (Z/Z⊙)
−1.5 (1)418

(for 0.2 < Z/Z⊙ < 2).419

Here, the power-law slope of −1.5 is recommended by420

SL24 and broadly consistent with various observational421

constraints from C II, dust, and gas depletion time mea-422

surements (e.g., Schruba et al. 2012; Amorín et al. 2016;423

Accurso et al. 2017; Hunt et al. 2020). We also calculate424

an alternative f(Z)G20 with a shallower power law in-425

dex of −0.8 (following Gong et al. 2020) for comparison,426

as numerical simulation studies often predict relatively427

shallow slopes (also see Glover & Clark 2012; Hu et al.428

2022). Considering that Equation 1 is mostly calibrated429

for Z ∼ 0.2−2.0Z⊙, we limit the power-law dependence430

to within this metallicity range and use the boundary431

values outside this range11 (i.e., use f(2Z⊙) at 2.5Z⊙).432

The “emissivity” term aims at capturing variations in433

CO optical depth and/or excitation temperature. Fol-434

lowing Bolatto et al. (2013) and Chiang et al. (2024), it435

is parameterized as a function of the local stellar mass436

surface density Σ⋆:437

g(Σ⋆) =

(
Σ⋆

100M⊙ pc−2

)−0.25

(2)438

(for Σ⋆ > 100M⊙ pc−2).439

The power-law index of −0.25 originates from Chiang440

et al. (2024) based on CO(1–0) data, though a steeper441

−0.5 slope was suggested by Bolatto et al. (2013) based442

on mostly CO(2–1) data. We calculate both in this443

work for comparisons. In either case, this g(Σ⋆) term444

is only in effect at Σ⋆ > 100M⊙ pc−2, where substan-445

tial changes in CO emissivity tend to occur based on446

empirical data (Bolatto et al. 2013; Chiang et al. 2024).447

The CO line ratio R21 ≡ ICO(2−1)/ICO(1−0) also varies448

with excitation condition. SL24 suggested a parameter-449

ization involving the local SFR surface density ΣSFR:450

R21(ΣSFR) = 0.65

(
ΣSFR

0.018M⊙ yr−1 kpc−2

)0.125

(3)451

(for 0.35 < R21 < 1.0).452

The 0.125 power law index recommended by SL24 is up-453

dated from Leroy et al. (2022) and broadly agrees with454

other studies in the literature (e.g., den Brok et al. 2021;455

Yajima et al. 2021; den Brok et al. 2025). The predicted456

R21(ΣSFR) value is required to be no smaller than 0.35457

and no larger than 1.0, following SL24 and reflecting the458

range of R21 values seen in most observations.459

We combine all three terms described above to derive460

the conversion factors for both CO(1–0) and CO(2–1):461

αCO(1−0) = αMW
CO(1−0) f(Z) g(Σ⋆) , (4)462

αCO(2−1) = αMW
CO(1−0) f(Z) g(Σ⋆)R21(ΣSFR)

−1 , (5)463

11 Note that metallicity values beyond 0.2−2.0Z⊙ are very rare
in our sample, partly due to the sample selection scheme (es-
pecially M⋆ > 109.3 M⊙; see section 2).
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where αMW
CO(1−0) = 4.35M⊙ pc−2 (K km s−1)−1 is the464

commonly adopted Galactic value. We feed the Z, Σ⋆465

and ΣSFR profiles calculated in subsection 2.3 into Equa-466

tion 4–5 to derive both αCO(1−0) and αCO(2−1) as func-467

tions of galactocentric radius in each galaxy.468

We emphasize that these αCO predictions should be469

viewed to have effective resolution of ≳kpc scales. This470

is not only because the input GALEX and WISE images471

are at these resolution (see subsection 2.1), but also be-472

cause the SL24 αCO prescriptions were largely motivated473

by and calibrated against kpc-scale measurements (see474

references therein). Although we do expect αCO to vary475

on smaller, ≲100 pc scales and have seen evidence for476

that in simulations and observations (e.g., Gong et al.477

2018; Teng et al. 2022, 2023), our αCO predictions are478

not designed to capture such variations, but rather to479

reflect (flux-weighted) average values over ≳kpc area.480

3. COMPARISONS TO CONVERSION FACTOR481

MEASUREMENTS IN THE LITERATURE482

To verify the reliability of our αCO predictions, we483

compile observational measurements of αCO from the484

literature (Sandstrom et al. 2013; Israel 2020; Teng et al.485

2022, 2023; den Brok et al. 2023a; Yasuda et al. 2023;486

Chiang et al. 2024). Some of these works even helped487

motivate and calibrate the SL24 prescription in the first488

place. They all focus on smaller sets of nearby galaxies489

within our sample, making it possible to directly bench-490

mark our αCO predictions using these galaxies. They491

also rely on different types of observations and employ492

different methods to measure αCO, as detailed below:493

• Sandstrom et al. (2013, dust-based): This work com-494

bines CO(2–1), H I, and far-IR dust observations495

to simultaneously solve for αCO and the dust-to-gas496

(D/G) ratio in 26 galaxies. These measurements have497

an effective resolution of 75′′ (i.e., size of “solution pix-498

els” therein). Solely based on CO(2–1) data, the αCO499

measurements are essentially αCO(2−1), although they500

were expressed as αCO(1−0) assuming a fixed R21.501

• den Brok et al. (2023a, dust-based): This work com-502

bines CO, H I, and dust data to solve for αCO and503

D/G ratio in two galaxies (M51 and M101). The504

method closely follows Sandstrom et al. (2013), and505

the effective resolution is also 75′′. Both αCO(1−0)506

and αCO(2−1) are determined in this work as it incor-507

porates both CO(1–0) and CO(2–1) data.508

• Yasuda et al. (2023, dust-based): This work combines509

CO(1–0), H I, and dust data to solve for αCO and510

D/G ratio for 22 galaxies. The method largely fol-511

lows Sandstrom et al. (2013), except that it measures512

one αCO value per galaxy, within an effective area513

that varies from galaxy to galaxy. Only αCO(1−0) is514

available as no CO(2–1) data were used.515

• Chiang et al. (2024, dust-based): This work combines516

CO, H I, dust, and metallicity measurements to de-517

rive αCO for 25 galaxies with CO(1–0) and 28 galaxies518

with CO(2–1). The effective resolution of these mea-519

surements are 2 kpc in physical scale, or 20′′−200′′ in520

angular size depending on the distance to each galaxy.521

αCO(1−0) and αCO(2−1) are measured for galaxies with522

CO(1–0) and CO(2–1) data, respectively.523

• Israel (2020, carbon budget accounting): This work524

compiles multi-J CO, [C I], and [C II] line data to525

account for the overall carbon budget and derive αCO526

for 69 galaxies. These measurements are for the cen-527

tral ∼20′′ in each galaxy. With R21 measured from528

observations, this work effectively determines both529

αCO(1−0) and αCO(2−1) at the same time.530

• Teng et al. (2022, 2023, LVG modeling): These works531

model multi-J CO and CO isotopologue lines to con-532

strain the gas physical conditions and αCO in the cen-533

ter of three galaxies (NGC 3351, 3627, and 4321).534

Although the original measurements have high na-535

tive resolution (∼1′′), we use flux-weighted αCO val-536

ues across the entire central ∼30′′ in these galax-537

ies for comparisons with our αCO predictions. Both538

αCO(1−0) and αCO(2−1) are available from these works.539

We compare these αCO measurements with our pre-540

dictions at matched effective resolution. That is, for each541

target from each literature work, we “rebin” its predicted542

αCO radial profiles by merging every N radial bins into543

one wider bin, such that the new bin width matches the544

effective resolution of the observational measurements.545

We calculate a weighted12 average αCO value across the546

contributing radial bins to determine the appropriate547

αCO prediction for each new, wider bin. These “re-548

binned” predictions are then compared with the median549

value of observational αCO measurements falling inside550

each (new) radial bin.551

3.1. CO(1–0) Conversion Factor552

Figure 3 shows these comparisons for αCO(1−0). To553

assess the effect of each term in Equation 4, we show554

four versions of αCO(1−0) predictions. The first shows555

only the metallicity term. The other three show both556

metallicity and emissivity terms, but vary each term557

between our fiducial prescription and alternative, com-558

monly adopted literature prescriptions.559

The version without an emissivity term, i.e.,560

αCO(1−0) = αMW
CO(1−0) f(Z), matches the observations561

reasonably well at the high αCO end, which mostly cor-562

respond to intermediate to large galactocentric radii.563

However, this version of the αCO(1−0) prediction exhibits564

a limited dynamic range of 3−7M⊙ pc−2 (K km s−1)−1
565

and is not able to capture the wide range of measured566

12 We use the WISE3 12µm flux (which strongly correlates with
CO; see Chown et al. 2021) as the weight for each bin, so that
each bin is approximately weighted by the expected total CO
flux it encloses.
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Figure 3. Comparing four versions of CO(1–0)-to-H2 conversion factor predictions (x-axes) with observational estimates from
the literature (y-axis). The latter include dust-based estimates across many galaxies presented in den Brok et al. (2023a, dB23),
Yasuda et al. (2023, Y23), and Chiang et al. (2024, C24), as well as CO multi-line modeling (i.e., LVG) by Teng et al. (2023,
T23) and carbon budget accounting by Israel (2020, I20) in galaxy centers. Note that the blue contours and downward triangles
separately show measurements in galaxy disks and centers from Chiang et al. (2024); the filled and open stars show two versions
of results from Teng et al. (2023) assuming CO/H2 abundance ratios of 1.5×10−4 and 3×10−4, respectively. Top left: The
metallicity-dependent CO-dark term f(Z) alone only spans a limited dynamic range, thus failing to match low αCO(1−0) values
from observational estimates in galaxy centers. Top right: A combination of the f(Z) term and a Σ⋆-dependent emissivity
term g(Σ⋆) matches dust-based and LVG-based estimates well but still disagrees with carbon budget accounting results (Israel
2020). Bottom left: Adopting an alternative emissivity term g(Σ⋆)B13 (Bolatto et al. 2013) results in lower αCO(1−0) than
most estimates for galaxy centers though still moderately higher than those from Israel (2020). Bottom right: An alternative
CO-dark term f(Z)G20 (Gong et al. 2020) yields similar results as the fiducial choice (top right), though the weaker metallicity
dependence in f(Z)G20 leads to slightly more underestimated αCO at the high end (i.e., in outer galaxy disks).
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values, which span ∼0.2−10M⊙ pc−2 (K km s−1)−1.567

This mismatch between predicted and estimated568

αCO(1−0) is particularly pronounced at low galactocen-569

tric radii (i.e., near galaxy centers) where the observed570

αCO(1−0) tends to be much lower than the f(Z)-only571

prediction, as highlighted by the Israel (2020) and Teng572

et al. (2023) measurements.573

Including an emissivity term in the αCO predictions574

leads to much better agreement with the low αCO(1−0)575

values observed in galaxy centers. With the fiducial576

functional form suggested by SL24 (i.e., Equation 2),577

the predicted αCO(1−0) agrees well with most dust-based578

estimates over a wider dynamic range (see Figure 3 top579

right); it also matches the LVG-based estimates when580

adopting a CO/H2 abundance ratio of 1.5×10−4 follow-581

ing Teng et al. (2024, see filled stars in Figure 3). How-582

ever, the predicted values are still systematically higher583

than αCO(1−0) estimates by Israel (2020) based on car-584

bon budget accounting13. This reflects an apparent ten-585

sion between Israel (2020) and dust-based studies like586

Chiang et al. (2024), especially since the galaxy samples587

examined by these works overlap substantially.588

Given this unresolved tension in the literature, we ex-589

periment with an alternative version of the emissivity590

term, with a steeper power law slope (−0.5) suggested591

by Bolatto et al. (2013). As Figure 3 bottom left panel592

shows, this alternative prescription yields αCO(1−0) pre-593

dictions that are substantially lower than most dust-594

based estimates in galaxy centers. It may be consis-595

tent with LVG-based estimates provided that a higher596

CO/H2 abundance ratio of 3×10−4 is assumed. Never-597

theless, the predictions are still higher than the Israel598

(2020) estimates. To make them align, an even steeper599

slope would be required for the emissivity term, and600

the discrepancies with the dust-based and LVG-based601

results would become more severe (also see Downes &602

Solomon 1998; Dunne et al. 2022).603

We also experiment with an alternative CO-dark term604

with a shallower power-law index, as suggested by Gong605

et al. (2020). It appears to yield similar results as the606

fiducial functional form (Figure 3 top right versus bot-607

tom right), although it tends to slightly underestimate608

αCO in outer galaxy disk regions. Overall, the current609

set of αCO measurements does not provide strong differ-610

entiating power between these CO-dark corrections.611

3.2. CO(2–1) Conversion Factor612

Figure 4 shows predictions of αCO(2−1) in comparison613

to observational estimates from the literature. The set614

of literature results included here are similar to Figure 3,615

13 It is worth noting that the majority of αCO estimates from
Israel (2020) are around the optically thin CO limit of
αCO(1−0) ≈ 0.4 M⊙ pc−2 (K km s−1)−1 (Bolatto et al. 2013,
assuming a fiducial CO abundance of 1.5×10−4 and an excita-
tion temperature of 50 K), which means they are close to the
lowest possible values.

except that we omit Yasuda et al. (2023, since this work616

did not measure αCO(2−1)) and include additional dust-617

based αCO(2−1) estimates by Sandstrom et al. (2013).618

Similar to the αCO(1−0) case, the observational es-619

timates for αCO(2−1) span a wide dynamic range of620

∼0.2−20M⊙ pc−2 (K km s−1)−1. This is not captured621

by αCO(2−1) predictions that account for only the622

metallicity-dependent CO-dark term (i.e., omitting the623

emissivity term and adopting R21, const = 0.65; Fig-624

ure 4 left panel). Even though this approach gives a625

reasonable normalization for most measurements out-626

side galaxy centers (e.g., going through the middle of627

the “disk” measurements from Chiang et al. 2024), it628

tends to under-predict measurements in galaxy outskirts629

(i.e., the high αCO(2−1) end) and severely over-predict630

in galaxy centers (the low αCO(2−1) end).631

Including the fiducial emissivity term brings the pre-632

dictions into better agreement with most observations633

in galaxy centers (Figure 4 middle panel). Nonethe-634

less, the aforementioned tension between the dust-based635

method and carbon budget accounting is also present for636

αCO(2−1), such that the predictions cannot match both637

at the same time. Besides, when incorporating both the638

CO-dark and emissivity terms but assuming a fixed line639

ratio of R21, const = 0.65, the predictions are still lower640

than observational estimates at the high αCO(2−1) end.641

The full prescription with all three terms (i.e., Equa-642

tion 5) shows the best agreement with most observa-643

tional estimates (Figure 4 right panel). The varying R21644

term is needed for achieving this agreement at the high645

αCO(2−1) end as R21 often decreases systematically to-646

wards galaxy outskirts as αCO increases (e.g., den Brok647

et al. 2021; Yajima et al. 2021; Leroy et al. 2022). This648

is supported by the reduced scatter around the iden-649

tity line when including the R21 term (e.g., from 0.19 to650

0.17 dex for the “disk” measurements from Chiang et al.651

2024). The variable R21 term also helps in the case of652

galaxy centers, where R21 can sometimes approach its653

thermal value (∼1). The general effects of R21 variations654

on αCO(2−1) are relatively mild, as R21 has a very narrow655

dynamic range (∼0.3−1); these effects can nevertheless656

become evident over a sizable sample of galaxies (also657

see subsection 4.1–4.2 and Keenan et al. 2024a).658

3.3. Path to Better Conversion Factor Recipes659

The comparisons between αCO prescriptions and mea-660

surements in subsection 3.1–3.2 highlight several aspects661

where future improvements are needed. For example,662

the CO-dark gas term is critical to understanding αCO663

variations in galaxies over a wide stellar mass range and664

as a function of radius within galaxies (also see section 4665

below). A recurring issue related to this term is the chal-666

lenge of obtaining precise and preferably direct metallic-667

ity estimates for systems where αCO estimates are avail-668

able or required (see discussion in Chiang et al. 2024).669

In this sense, the emerging synergies between CO and670

optical IFU surveys (e.g., EDGE, PHANGS, MAUVE,671
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Figure 4. Comparing three versions of CO(2–1)-to-H2 conversion factor predictions (x-axes) with observational estimates
from the literature (y-axis). The latter include a similar set of literature results as Figure 3, except omitting αCO(1−0) estimates
by Yasuda et al. (2023) and adding αCO(2−1) from Sandstrom et al. (2013, S13). Left & middle: Assuming a constant line ratio
of R21, const = 0.65, the CO-dark and emissivity terms in combination can provide a wider range of αCO(2−1) values and better
agreements with observational results than the CO-dark term alone. Right: Including a ΣSFR-dependent line ratio term on top
of the CO-dark and emissivity terms further improves the agreement with observations at both low and high αCO(2−1) ends.

KILOGAS) will enable a major step forward. The CO-672

dark gas term is also expected to depend on gas surface673

density and dust-to-gas ratio in addition to metallicity674

(e.g., see Bolatto et al. 2013). Here, highly resolved es-675

timates of αCO across diverse sub-galactic environments676

in local galaxies will help uncover dependence on sec-677

ondary parameters.678

More generally, we need a more extensive set of high-679

quality αCO measurements that span a wide dynamic680

range in metallicity and galaxy type. This is essential681

for improving observational constraints on the CO-dark682

term and narrowing down from the wide range of cal-683

ibrations present in the literature (e.g., see Schinnerer684

& Leroy 2024). There are prospects for obtaining these685

much-needed measurements. In the intermediate term,686

next-generation facilities that survey the full dust emis-687

sion SED and the [C II] line emission (e.g., the pro-688

posed PRIMA mission; Glenn et al. 2023) will lead to689

great advances. In the near term, sub-mm surveys of690

dust emission (with ground-based bolometers; e.g., Hol-691

land et al. 2013) and UV/optical observations of nebu-692

lar and stellar attenuation are also viable paths forward693

(e.g., Kreckel et al. 2013; Barrera-Ballesteros et al. 2020;694

Faustino Vieira et al. 2024), albeit with more method-695

ological uncertainty.696

For the CO emissivity term, a major issue is that dust-697

based, LVG-based, and carbon budget accounting meth-698

ods yield incompatible αCO estimates in galaxy centers.699

Given that these methods have been applied to many700

common targets, a comparative analysis that examines701

the input datasets and the assumptions underlying each702

method appears to be a fruitful next step. A larger703

set of multi-line CO, 13CO, and [C I] observations will704

further provide the necessary training data to calibrate705

CO emissivity prescriptions based on CO line width and706

other more physically relevant quantities accessible at707

high resolution (e.g., Teng et al. 2024). Such observa-708

tions are feasible, though expensive, with current facili-709

ties including ALMA.710

For CO excitation, there is significant ongoing effort711

to measure R21 and the related line ratios R31, and R32712

across galaxies and spatial scales (e.g., den Brok et al.713

2021; Leroy et al. 2022; den Brok et al. 2023a; Keenan714

et al. 2024b; den Brok et al. 2025; Komugi et al. 2025;715

Lee et al. 2025; Keenan et al. 2025). Recent studies716

highlighted ΣSFR as the most promising predictor for717

R21, and similar calibrations are beginning to emerge718

for the other line ratios (den Brok et al. 2023b; Keenan719

et al. 2025). Furthermore, simulations suggested that720

CO line ratios correlates with and may be used as prox-721

ies for CO emissivity variations (e.g., Gong et al. 2020).722

In this sense, improved measurements and understand-723

ing of CO excitation effects may also feed back into im-724

proved prescriptions for the emissivity term.725

4. CONVERSION FACTOR VARIATIONS726

Based on our αCO predictions with the SL24 prescrip-727

tions, we characterize αCO variations and trends across728

the local galaxy population (subsection 4.1–4.2). We729

are interested in how αCO depends on galactocentric730

radius, which captures much of its internal variation731

within galaxies. We are also interested in the depen-732

dence of αCO on galaxy global stellar mass and SFR.733

These are among the most fundamental properties in the734

context of galaxy evolution, and many galaxy-integrated735
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CO surveys report key results as functions of M⋆ and736

SFR (e.g., Tacconi et al. 2013; Saintonge et al. 2017;737

Keenan et al. 2024b).738

4.1. Conversion Factor Radial Profiles739

We first examine systematic variations in the resolved740

αCO radial profiles. Leveraging the large sample size,741

we compute median αCO radial profiles combining many742

galaxies with similar properties to average out galaxy-743

to-galaxy variations and distill key systematic trends.744

Figure 5 shows median radial profiles of αCO(1−0) and745

αCO(2−1) for galaxies in various parts of the M⋆–SFR746

parameter space. These median radial profiles are de-747

rived for galaxies in bins of M⋆ and “offset” from the748

star-forming main sequence (SFMS; also see Figure 6749

top left panel). This offset is defined as750

∆MS = log10 SFR− log10 SFRMS(M⋆) , (6)751

where SFRMS(M⋆) is the expected SFR at any given M⋆752

for galaxies on the SFMS. Here we adopt a parameter-753

ized fit of the SFMS derived by Leroy et al. (2019) for754

the parent z0MGS sample:755

log10

(
SFRMS

M⊙ yr−1

)
= 0.68 log10

(
M⋆

1010 M⊙

)
−0.17 . (7)756

As such, galaxies with larger |∆MS| values are located757

further away from the SFMS (as defined by Equation 7)758

in the M⋆–SFR plane.759

Figure 5 highlights several key trends. First, galaxies760

in all M⋆ and ∆MS bins show strong radial gradients761

in αCO(1−0) and αCO(2−1), spanning at least a factor of762

2 from r = 0 to >2 r50. For relatively massive galaxies763

(M⋆ > 1010 M⊙), the αCO(1−0) values can be more than764

2 times below or above the nominal Galactic value of765

4.35M⊙ pc−2 (K km s−1)−1. This makes a clear case766

that accounting for αCO variations is important even767

when studying a single galaxy.768

The median αCO(1−0) radial profiles for lower-mass769

galaxies (M⋆ < 1010 M⊙) in all ∆MS bins are consistent770

with a single exponential relation (i.e., a straight line771

under log(y) stretch), implying a 0.15 dex increase in772

αCO(1−0) when r increases by r50. This relation comes773

directly from the CO-dark term f(Z), which combines774

a −0.1 dex/r50 metallicity gradient (see subsection 2.3)775

with a Z−1.5 power-law scaling (Equation 1). The lack of776

any clear deviation from this simple expectation demon-777

strates that, for our fiducial prescription, the αCO(1−0)778

profiles are determined almost solely by the f(Z) term779

at M⋆ < 1010 M⊙.780

The median αCO(1−0) radial profiles for higher-mass781

galaxies (M⋆ > 1010 M⊙) have an overall lower normal-782

ization than less massive galaxies – that is, αCO(1−0) ap-783

pears lower at all given r/r50. In addition, the αCO(1−0)784

profiles are no longer well described by a single exponen-785

tial profile. Instead, massive galaxies show clear devia-786

tions toward lower αCO(1−0) within r < r50. This is due787

100

101

α C
O

(1
−

0)
[M
�

pc
−

2
(K

km
s−

1 )
−

1 ]

f (Z) slope

M? < 1010 M�
M? > 1010 M�

0.0 0.5 1.0 1.5 2.0

r/r50

100

101

α C
O

(2
−

1)
[M
�

pc
−

2
(K

km
s−

1 )
−

1 ]

∆MS<−0.3 dex
∆MS ∈ [−0.3,+0.3] dex
∆MS>+0.3 dex

Figure 5. Median αCO radial profiles for galaxies grouped
by stellar mass (M⋆) and offset from the star-forming main
sequence (∆MS; Equation 6). The x-axis represents galacto-
centric radius in units of r50 in WISE1 band. In lower-mass
galaxies (M⋆ < 1010 M⊙, dotted lines), the radial profile of
αCO(1−0) (top panel) is effectively set by the CO-dark term
f(Z) alone. In higher-mass galaxies (M⋆ > 1010 M⊙, solid
lines) the radial profile of αCO(1−0) steepens at r ≲ r50 as
the emissivity term g(Σ⋆) plays a significant role. While the
αCO(1−0) radial profiles barely vary with ∆MS (color-coded),
the αCO(2−1) radial profiles (bottom panel) clearly do depend
on this quantity. We predict lower αCO(2−1) in galaxies with
higher ∆MS (due to a higher line ratio R21).

to common onset of the emissivity term g(Σ⋆) near the788

centers of higher-mass galaxies, where Σ⋆ exceeds the789

100M⊙ pc−2 threshold (see Equation 2). Meanwhile,790

the overall αCO(1−0) profiles remain relatively insensitive791

to ∆MS at M⋆ > 1010 M⊙, reflecting weak variations in792

galaxy stellar mass distributions as a function of ∆MS.793

The median αCO(2−1) radial profiles show a much794

stronger dependence on ∆MS, with systematically lower795

αCO(2−1) (at any given r/r50) in galaxies with higher796

∆MS. In contrast to the lack of dependence seen for797

αCO(1−0), this clear ∆MS dependence in αCO(2−1) comes798

from the line ratio term R21(ΣSFR). As galaxies with799

higher ∆MS generally have higher ΣSFR, R21 should be800

higher and αCO(2−1) correspondingly lower.801
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4.2. Galaxy Global Conversion Factors802

To connect more directly to the literature on global803

galaxy evolution, we compute a global αCO value for804

each galaxy from the αCO radial profile via a WISE3805

flux-weighted average. That is, we use the WISE3 12 µm806

flux density in each radial bin (i.e., surface brightness807

times the radial bin area) as the weight to average αCO808

over all bins. This averaging scheme is motivated by809

observational evidence of a strong and almost linear810

correlation between WISE3 surface brightness and CO811

line intensity (e.g., Gao et al. 2019; Chown et al. 2021;812

Gao et al. 2022; Leroy et al. 2023). The WISE3 flux-813

weighting thus approximates a CO flux-weighting, which814

is required to correctly convert radial profiles into global815

αCO values:816

αglobal
CO ≡ Mmol, tot

L′
CO, tot

=

∑
i αCO,i ICO,i Ai∑

i ICO,i Ai
817

≈
∑

i αCO,i I12µm,i Ai∑
i I12µm,i Ai

. (8)818

Here αCO,i, ICO,i, I12µm,i, and Ai denote the conver-819

sion factor (for either CO transition), CO line intensity820

(in K km s−1), WISE3 surface brightness (in MJy sr−1),821

and area of the ith radial bin. The last step is where822

the empirical finding of I12µm ∝ ICO comes in.823

After obtaining global αCO values for all galaxies, we824

bin them into regular, logarithmically spaced grids of825

M⋆ and SFR and report the results in the upper panels826

of Figure 6. The upper left panel shows the distribu-827

tion of all galaxies with αCO predictions. As expected,828

most galaxies are located within ±0.5 dex of the SFMS829

(Equation 7; Leroy et al. 2019), although the sample830

also includes a small subset of early-type galaxies reach-831

ing ≳1 dex below the SFMS at the high M⋆ end.832

The upper middle and right panels of Figure 6 show833

the variation of αCO(1−0) and αCO(2−1) across the M⋆–834

SFR plane, with the color scale showing the median835

global αCO value in each M⋆–SFR bin. Both panels836

reveal systematic trends across the M⋆ and SFR ranges837

probed by our sample. Higher αCO values are generally838

seen towards lower M⋆ for both CO transitions. The839

lowest αCO values are found at intermediate to high M⋆840

away from the SFMS – for CO(1–0) they mostly appear841

on the very low SFR extreme, whereas for CO(2–1) they842

appear on both the low and high SFR extremes.843

For most of these trends in the global αCO values visi-844

ble in Figure 6, we can immediately identify correspond-845

ing trends in their resolved radial profiles in Figure 5.846

For example, the lower global αCO(1−0) values in high-847

mass galaxies partly reflect the overall lower normaliza-848

tion of the αCO(1−0) radial profiles at high M⋆ (Figure 5849

top panel); the lower global αCO(2−1) values in high-SFR850

galaxies instead originate from the ∆MS dependence of851

the normalization of the αCO(2−1) radial profiles (Fig-852

ure 5 bottom panel). In these cases, what we see in853

Figure 6 are simply “distilled” versions of the systematic854

trends that we saw with the resolved αCO radial profiles.855

But there is an intriguing trend in Figure 6 that one856

would not obviously expect from Figure 5 — the global857

αCO(1−0) values appear low in massive galaxies with low858

SFR or ∆MS. This is in contrast to the insensitivity of859

the resolved αCO(1−0) radial profiles to ∆MS in Figure 5.860

The reason behind this apparent contrast is the differ-861

ential weighting of radial bins when deriving global αCO862

values (Equation 8). That is, massive galaxies with low863

∆MS tend to have more centrally concentrated WISE3864

12µm emission, which means that the inner radial bins865

with lower αCO would receive more weight, resulting in866

lower global αCO values for these galaxies. This inter-867

esting result is directly relevant to the interpretation of868

CO emission in lenticular and elliptical galaxies (e.g.,869

Young et al. 2011; Davis et al. 2019). Direct observa-870

tional constraints on the CO emission radial distribution871

and conversion factors in these systems would help con-872

firm the predicted trends and refine our understanding873

of the molecular gas properties therein.874

As a further step in understanding and contextualizing875

the global αCO variations, we show in the lower panels876

of Figure 6 systematic trends in the CO-dark term f(Z),877

emissivity term g(Σ⋆), and line ratio R21(ΣSFR) across878

the same M⋆−SFR plane. Here, the galaxy global aver-879

ages of f(Z), g(Σ⋆), R21(ΣSFR) are computed with the880

same WISE3 flux-weighting scheme (similar to Equa-881

tion 8 for αCO). The only exception is R21, for which882

we compute a weighted harmonic mean instead of arith-883

metic mean, reflecting the inverse proportionality be-884

tween αCO(2−1) and R21 (see Equation 5).885

The lower left panel of Figure 6 shows that the CO-886

dark term f(Z) varies primarily with M⋆, with the887

highest values appearing at the lowest M⋆. This trend888

is essentially “baked in” by our adopted galaxy mass–889

metallicity relation (Sánchez et al. 2019) that sets the890

metallicity “zero point” for each galaxy (i.e., at r = r50;891

see subsection 2.3). Deviations from this dominant trend892

come from galaxy-to-galaxy variations in r50 (which con-893

trols the radial metallicity slope; subsection 2.3) and the894

WISE3 surface brightness profile (which sets the rela-895

tive weighting of all radial bins). As mentioned above,896

the lower f(Z) in high mass galaxies below the main897

sequence primarily reflects their more compact WISE3898

distributions compared to galaxies with the same M⋆ on899

the star-forming main sequence.900

The lower middle panel of Figure 6 shows that the901

emissivity term g(Σ⋆) is generally “inactive” at low M⋆,902

as already discussed in subsection 4.1. The behavior of903

g(Σ⋆) at the high M⋆ and low SFR end mirrors that of904

αCO(1−0) and f(Z), and the explanation is essentially905

the same: more centrally concentrated WISE3 emis-906

sion leads to high weights being assigned to inner ra-907

dial bins with lower g(Σ⋆) values. These trends in f(Z)908

and g(Σ⋆) together drive the systematic variations of909

αCO(1−0) with M⋆ and SFR.910
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Figure 6. Galaxy distribution and the predicted global αCO values across the M⋆–SFR plane. Top left: 2D histogram
(grayscale heatmap) and iso-density contours (dashed curves) of galaxies in our sample. Their distribution mostly centers
around the star-forming main sequence at z ≈ 0 (blue line; Leroy et al. 2019). Top middle & right: Predicted galaxy global
αCO(1−0) and αCO(2−1) values across the same plane (overlaid with the same density contours as in the top left panel). The
highest αCO values appear at the low M⋆ end, and the lowest αCO values appear at higher M⋆ and away from the SFMS.
Bottom: Variations of the CO-dark, emissivity, and line ratio terms in the SL24 αCO prescriptions. These variations work in
concert to drive the systematic trends seen in αCO in the top middle and right panels. Note that the colorbar for R21 (bottom
right) is reversed so that brighter colors still imply lower αCO as in other panels.

The lower right panel of Figure 6 shows that the line911

ratio R21(ΣSFR) is mainly correlated with SFR or ∆MS.912

This is consistent with the latest observations of galaxy913

global R21 reported by Keenan et al. (2024a) for galax-914

ies with a similar range of M⋆ and SFR. More quanti-915

tatively, the median value in each SFR bin goes from916

R21 = 0.4 at SFR = 0.1 M⊙ yr−1 to 0.8 at 10 M⊙ yr−1,917

also in good agreement with the results of Keenan et al.918

(2024a). This monotonically increasing trend of R21919

with SFR and ∆MS explains the difference between920

αCO(1−0) and αCO(2−1) seen in the upper middle and921

right panels of Figure 6.922

5. IMPLICATIONS FOR THE MOLECULAR GAS923

DEPLETION TIME924

The molecular gas depletion time (defined as the ra-925

tio of molecular gas mass to star formation rate, tdep ≡926

Mmol / SFR) and its dependencies on galaxy properties927

play a central role in our understanding of galaxy evo-928

lution (e.g., Tacconi et al. 2020; Saintonge & Catinella929

2022). In observational studies, tdep is often derived930

from the observable CO luminosity (L′
CO) and SFR931
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given some assumed αCO values:932

tdep =
αCO L′

CO

SFR
. (9)933

As such, obtaining reliable tdep estimates across galaxies934

requires understanding how αCO varies among the same935

galaxy population in the first place.936

Our αCO estimates across a large sample of local937

galaxies allow us to address this problem statistically.938

We use our αCO predictions to determine how SFR/L′
CO939

should depend on galaxy stellar mass M⋆ if only αCO940

varies while tdep remains fixed. Then we compare this941

prediction to the observed SFR/L′
CO versus M⋆ trend942

for a large sample of literature observations. The differ-943

ence between the observed and predicted trends should944

reflect the real physical variations in tdep (or inaccura-945

cies in our adopted αCO prescription).946

Observed SFR/L′
CO–M⋆ relation: We consider947

SFR/L′
CO vs. M⋆ for an extensive compilation of948

integrated galaxy measurements from Leroy et al.949

(2022, 2023). This compilation includes many sur-950

veys targeting either CO(1–0) (e.g., ALMaQUEST,951

AMIGA, EDGE-CARMA, xCOLDGASS; Kuno et al.952

2007; Lisenfeld et al. 2011; Bolatto et al. 2017; Sain-953

tonge et al. 2017; Sorai et al. 2019; Lin et al. 2020;954

Wylezalek et al. 2022) or CO(2–1) (e.g., ALLSMOG,955

EDGE-APEX, HERACLES, PHANGS–ALMA; Leroy956

et al. 2009; Bothwell et al. 2014; Jiang et al. 2015; Ci-957

cone et al. 2017; Colombo et al. 2020, 2025; Leroy et al.958

2021a). These datasets are placed onto a common sys-959

tems of SFR and M⋆ estimates consistent with z0MGS960

and Salim et al. (2016, 2018), so that the M⋆ and SFR961

for the literature and our sample are directly comparable962

to each other. From this compilation, we select a subset963

of galaxies with M⋆>109.3 M⊙ and within ±0.5 dex of964

the SFMS (Figure 6) to focus on normal star-forming965

galaxies within the mass range where we predict αCO.966

We show the observed SFR/L′
CO versus M⋆ trends in967

the top panels of Figure 7, plotting both CO detections968

(blue/orange diamonds) and upper limits (blue/orange969

upward triangles). The running median curves for970

these observational data (blue/orange solid lines) show971

a systematic decrease in SFR/L′
CO of 0.6–0.7 dex over972

∼1.5 dex in M⋆. Both trends are reasonably described973

by a power law over the range of M⋆ = 109.5−11 M⊙:974

SFR

L′
CO(1−0)

=
10−8.37 M⊙ yr−1

K km s−1 pc2

(
M⋆

1010 M⊙

)−0.29

, (10)975

and976

SFR

L′
CO(2−1)

=
10−8.19 M⊙ yr−1

K km s−1 pc2

(
M⋆

1010 M⊙

)−0.40

. (11)977

The scatters about these relations are 0.3−0.4 dex.978

Predicted SFR/L′
CO–M⋆ relation: To construct a pre-979

dicted trend, we select galaxies in our z0MGS sample980

within ±0.5 dex of the SFMS (see Figure 6). Then we981

combine their estimated αCO with an adopted fiducial982

depletion time tdep, fid = 2 Gyr to predict SFR/L′
CO983

for each galaxy via Equation 9. This tdep, fid value is984

typical among resolved observations of massive, local,985

star-forming galaxies (e.g., Leroy et al. 2008; Sun et al.986

2023), but the exact normalization is not critical be-987

cause tdep, fid only scales the amplitude of SFR/L′
CO for988

all galaxies, not its dependence on M⋆.989

We show the predicted SFR/L′
CO as a function of M⋆990

for both CO transitions in the top panels of Figure 7.991

The galaxy-by-galaxy results (gray dots) and the run-992

ning median curves (gray dotted lines) both reveal a993

weak decreasing trend of expected SFR/L′
CO as a func-994

tion of M⋆. In general, SFR/L′
CO is predicted to de-995

crease by 0.15–0.25 dex for either CO transition over996

∼1.5 dex in M⋆. This reflects the anti-correlation be-997

tween αCO and M⋆ already seen in Figure 6. The 1σ998

scatter at any given M⋆ is ∼0.1 dex.999

Implications: The observational results shown in Fig-1000

ure 7 represent one of the most complete compilations1001

to date for both CO(1–0) and CO(2–1). The observed1002

trends are strong and continuous over the range of1003

M⋆ = 109.5−11 M⊙, where metallicity does not change1004

by a large amount (for reference, the low end of this1005

range corresponds to approximately the mass of M33 or1006

the LMC). Given that the observed trends in SFR/L′
CO1007

reflect a mixture of physical variations in αCO and tdep,1008

we suggest that its relationship with M⋆ should be con-1009

sidered one of the fundamental molecular gas scaling1010

relations. We encourage future surveys to measure this1011

relation explicitly and identify it as a valuable bench-1012

mark for numerical simulations that attempt to predict1013

CO emission and star formation rate.1014

Furthermore, the predicted trends from our αCO es-1015

timates and a fixed tdep is much weaker than the ob-1016

served trends. Observations show systematic changes of1017

0.6−0.7 dex in SFR/L′
CO as a function of M⋆, while our1018

calculations predict only 0.15−0.25 dex over the same1019

M⋆ range. Such discrepancies suggest that either our1020

αCO predictions fail to match the amplitude of varia-1021

tions in reality, or tdep is not fixed in reality and varies1022

systematically with M⋆.1023

The most straightforward way to adjust our αCO pre-1024

diction to explain the observations would be for f(Z)1025

to have a significantly steeper functional form, because1026

metallicity varies primarily with M⋆ in our calculations.1027

While not ruled out, this is not currently favored by sim-1028

ulation studies (e.g., Gong et al. 2020; Hu et al. 2022)1029

or observational measurements in low-mass galaxies (see1030

Bolatto et al. 2013; Schinnerer & Leroy 2024, especially1031

the synthesis plots in the latter). For reference, αCO es-1032

timates for the LMC and M33, which would sit at the1033

low end of our studied mass range, tend to find values1034

of ∼2 times the Galactic value (e.g., Leroy et al. 2011;1035

Bolatto et al. 2013; Jameson et al. 2016, among others).1036
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Figure 7. Galaxy-integrated SFR to CO luminosity ratios as a function of stellar mass (top) and the implied molecular gas
depletion time trends (bottom). Results based on CO(1–0) data are shown on the left, whereas those based on CO(2–1) are on
the right. In the top panels, blue/orange symbols show a large set of observational measurements (diamonds) and CO upper
limits (upward triangles, corresponding to SFR/L′

CO lower limits) from the literature compiled by Leroy et al. (2022, 2023). The
blue/orange solid lines show the running median for these observations, and shaded regions showing the 1σ (16–84th percentile)
range. Gray symbols and dotted lines instead show the expected relationship across our sample from our predicted global αCO

values assuming a fixed molecular gas depletion time tdep, fid = 2 Gyr. The discrepancies between the observations (blue/orange)
and the expectations (gray) can be explained if tdep varies systematically as a function of M⋆. We show these implied variations
in the bottom panels. The implied tdep variations are ∼0.5 dex across the probed M⋆ range and 0.1–0.3 dex at a given M⋆.

This translates to a ∼0.3 dex difference from value at1037

the high-mass end, which is only half of the observed1038

range in SFR/L′
CO.1039

Alternatively, tdep may vary as a function of M⋆, with1040

lower values in low M⋆ systems. This appears to be the1041

most likely explanation for our results. By contrasting1042

the observed trends with the predicted ones, we can de-1043

rive the implied variations in tdep if our αCO predictions1044

are accurate. These implied tdep trends are shown in the1045

bottom panels of Figure 7.1046

In detail, the overall slope discrepancies suggest that1047

tdep increases by ∼0.5 dex over M⋆ = 109.5−11 M⊙, only1048

reaching the fiducial 2 Gyr value near the high M⋆ end.1049

The best-fit power-law relations are:1050

t
CO(1−0)
dep = 1.2Gyr (M⋆/10

10 M⊙)
0.19 , (12)1051

t
CO(2−1)
dep = 1.6Gyr (M⋆/10

10 M⊙)
0.29 . (13)1052

The mild discrepancy between these trends inferred from1053

CO(1–0) and CO(2–1) seems to suggest that our R211054

predictions may not fully account for its trends with1055

M⋆ in reality, or the CO(1–0) and CO(2–1) datasets in1056

the literature may be influenced by different systematic1057

effects, or both.1058

Another way to phrase our quantitative results is that1059

roughly 1/3 of the observed trend in SFR/L′
CO with M⋆1060

are due to the predicted αCO variations, and the remain-1061

ing 2/3 are due to tdep variations. This is in reasonable1062

agreement with results in the literature. For example,1063

Saintonge et al. (2017) reports an anti-correlation be-1064

tween tdep and M⋆ based on the αCO prescription of1065

Accurso et al. (2017), and Hunt et al. (2020) find simi-1066

lar results based on their αCO estimates.1067

Exploring the reason for the shorter tdep in low-mass1068

galaxies is beyond the scope of this paper. However,1069

we note that the ISM in these galaxies tends to be1070

more dominated by H I compared to H2 (e.g., Sain-1071

tonge & Catinella 2022), they tend to host fewer molec-1072

ular clouds with lower surface densities (e.g., Sun et al.1073

2022). The shorter tdep in low-M⋆ galaxies may reflect1074

that these galaxies lack diffuse or inert molecular gas,1075

that atomic gas makes up more of the material in star-1076

forming complexes, and/or that feedback more readily1077

disperses molecular clouds.1078
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6. SUMMARY1079

We analyze GALEX UV and WISE IR images for1080

10,657 local galaxies to measure the UV-to-IR surface1081

brightness radial profiles, half-light radii, stellar mass1082

surface density (Σ⋆) profiles, and SFR surface density1083

(ΣSFR) profiles for those detected in the relevant bands.1084

This represents a major effort to systematically char-1085

acterize the radial structure of massive galaxies (M⋆ >1086

109.3 M⊙) throughout the local volume (d ≲ 50 Mpc),1087

as part of the z=0 Multiwavelength Galaxy Synthesis1088

project (Leroy et al. 2019).1089

While these measurements have broad relevance and1090

many potential applications, in this work we primarily1091

use them to obtain CO-to-H2 conversion factor (αCO)1092

predictions based on state-of-the-art empirical prescrip-1093

tions (e.g., Bolatto et al. 2013; Gong et al. 2020; Schin-1094

nerer & Leroy 2024). These spatially resolved αCO pre-1095

dictions cover 5,244 galaxies, many of which have been1096

(or will likely be) targeted in large CO mapping cam-1097

paigns. Our αCO predictions address the urgent need1098

for modern CO studies to account for substantial αCO1099

variations both within a galaxy and among galaxies.1100

To validate our αCO predictions, we compile existing1101

observational αCO measurements in the literature (in-1102

cluding dust-based, CO multi-line modeling, and carbon1103

budget accounting results; Sandstrom et al. 2013; Israel1104

2020; den Brok et al. 2023a; Teng et al. 2023; Yasuda1105

et al. 2023; Chiang et al. 2024), and check our predic-1106

tions against these measurements for a small overlapping1107

subsample of galaxies (Figure 3 and Figure 4). The best1108

agreements are achieved when the predictions account1109

for not only CO-dark gas (as a function of metallicity),1110

but also CO emissivity (as a function of Σ⋆) and exci-1111

tation effects (as a function of ΣSFR). The emissivity1112

effects are crucial for properly reproducing the observed1113

low αCO values in the inner regions of massive galax-1114

ies, although there remains some tension between dif-1115

ferent observational measurements in this regime. The1116

excitation effects play a central role in translating be-1117

tween CO transitions and should be considered when1118

using CO(2–1) or higher-J lines to trace molecular gas.1119

Across our entire sample, the αCO predictions exhibit1120

several salient trends as functions of galaxy global stellar1121

mass (M⋆) and SFR (Figure 5 and Figure 6). For low-1122

M⋆ galaxies, the metallicity-dependent CO-dark term1123

dominates the hybrid Schinnerer & Leroy (2024) pre-1124

scription, predicting high values of αCO(1−0) ≳ 5 and1125

αCO(2−1) ≳ 10 (in units of M⊙ pc−2 (K km s−1)−1). For1126

high-M⋆ but low-SFR galaxies, the Σ⋆-dependent emis-1127

sivity term becomes prominent and predicts low values1128

of αCO(1−0) ≲ 2.5 and αCO(2−1) ≲ 5. For high-SFR1129

galaxies, the ΣSFR-dependent excitation term predicts1130

high CO(2–1)-to-(1–0) ratios of R21 ≳ 0.8, which sug-1131

gests lower αCO(2−1) values even though αCO(1−0) may1132

be moderate.1133

We explore the implications of our prediction for the1134

molecular gas depletion time, tdep (Figure 7). Leverag-1135

ing an extensive compilation of galaxy global SFR and1136

CO luminosity measurements, we measure the depen-1137

dence of SFR/L′
CO on M⋆ for main sequence galaxies1138

to be SFR/L′
CO(1−0) ∝ M−0.29

⋆ and SFR/L′
CO(2−1) ∝1139

M−0.40
⋆ . We contrast these measurements with expecta-1140

tions from our αCO predictions and a fixed tdep, finding1141

that the observed trends are much stronger than the1142

expected trends and exhibit ∼3 times wider range of1143

SFR/L′
CO values over the same M⋆ range. The most1144

likely explanation is that the molecular gas depletion1145

time increases systematically with M⋆, from ≲1 Gyr at1146

M⋆ = 109.5 M⊙ to 2–3 Gyr at 1011 M⊙.1147

We believe this work offers the best attempt to date1148

in quantifying the radial structures of and αCO varia-1149

tions in galaxies throughout the local universe. To fa-1150

cilitate many potential applications of our results, we1151

publish all measurements from this work in the form of1152

machine-readable tables (including resolved radial pro-1153

files as well as global values, see subsection 4.2) and1154

FITS images (αCO predictions for galaxies in several CO1155

surveys, see Appendix C). We also publish a Python1156

package that compiles and implements many empirical1157

αCO prescriptions in the literature (Appendix D). We1158

hope that these efforts will motivate the community to1159

adopt current best practices for handling αCO (espe-1160

cially in the context of large CO surveys, e.g., EDGE-1161

CALIFA, PHANGS, MAUVE, and KILOGAS; Bolatto1162

et al. 2017; Leroy et al. 2021a, J. Sun et al., in prepara-1163

tion), but also to expand and improve the current set of1164

αCO measurements from observations.1165
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APPENDIX1215

A. STRIPE INTEGRAL1216

We use a “stripe integral” method (Warmels 1988) to1217

reconstruct surface brightness radial profiles for galaxies1218

with high inclination angles (see subsection 2.2). In this1219

appendix, we detail the concept behind this method, our1220

implementation, and some caveats.1221

Figure A1 illustrates the concept with an inclined1222

galaxy disk that is geometrically thin, axisymmetric,1223

and has optically thin emission. This distribution, when1224

viewed face-on, follows a surface brightness radial pro-1225

file, I(r). A common way to derive I(r) for moderately1226

inclined galaxies is to calculate the average observed1227

surface brightness in a series of radial bins and mul-1228

tiply them by cos i to account for the inclination. This1229

is the “radial binning” method, and the result would1230

be a series of inclination-corrected surface brightnesses1231

(I1, I2, ..., In) as a discrete representation of the true sur-1232

face brightness profile I(r).1233

The radial binning method works under three con-1234

ditions: (a) the inclination and position angle of the1235

galaxy are well known, (b) the light distribution along1236

the (projected) minor axis is well resolved in obser-1237

vations, and (c) the intrinsic “flatness” of the galaxy1238

disk, defined as the disk vertical scale height to radial1239

scale length ratio, is much smaller than cos i. For high-1240

inclination galaxies that do not fulfill these conditions,1241

there will be substantial “smearing” of emission along1242

the minor axis across radial bins, such that the radial1243

binning measurements become at least inaccurate, if not1244

completely meaningless. In the case where the inclina-1245

tion is poorly constrained, the conversion to face-on sur-1246

face brightness estimates will also be highly uncertain.1247

The stripe integral method reconstructs I(r) even in1248

cases where these conditions do not hold. Instead of1249

14 https://ui.adsabs.harvard.edu/
15 http://atlas.obs-hp.fr/hyperleda/

𝑟

Average surface brightness in radial bins: 𝑰𝟏, 𝑰𝟐, 𝑰𝟑, … , 𝑰𝒏

𝐼1
𝐼2 𝐼𝑛

𝑆1 𝑆2 𝑆3 𝑆𝑛

Total flux density in integration stripes: 𝑺𝟏, 𝑺𝟐, 𝑺𝟑, … , 𝑺𝒏

𝐼3 ⋯

⋯

Abel transform Inverse Abel transform

𝑥

Figure A1. Illustration of a surface brightness profile
measured from radial binning (I1, I2, ..., In; top) and a flux
density sequence computed via stripe integrals (S1, S2, ..., Sn;
bottom). For axisymmetric disks, they are related by a dis-
crete version of the Abel transform (or its inverse).

radial bins, it defines a series of rectangular “integra-1250

tion stripes,” each spanning the full width of the galaxy1251

along its minor axis (see bottom part of Figure A1). The1252

width of these integration stripes along the major axis1253

matches the desired radial bin width for the output sur-1254

face brightness profile, and the stripes collectively cover1255

the entire galaxy footprint. Within each stripe, one com-1256

putes the enclosed total flux density, S =
∫
IdΩ. This1257

sequence of integrated flux densities across all stripes1258

(S1, S2, ..., Sn) represents a key intermediate product.1259

Under the assumptions of an axisymmetric disk, op-1260

tically thin emission, and no emission beyond the last1261

https://github.com/astrojysun/COConversionFactor
https://github.com/yymao/adstex
https://ui.adsabs.harvard.edu/
http://atlas.obs-hp.fr/hyperleda/
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radial bin, one can translate between the radial surface1262

brightness profile I1, I2, ..., In and the flux density se-1263

quence S1, S2, ..., Sn via a discrete version of the Abel1264

transform (or its inverse transform). For such linear1265

transforms between n-dimensional vectors, one can write1266

them in matrix form as:1267 
S1

S2

...
Sn

 = A


I1
I2
...
In

 , or


I1
I2
...
In

 = A−1


S1

S2

...
Sn

 . (A1)1268

Here, A is the matrix representation of the Abel trans-1269

form. Its matrix elements Aij can be interpreted ge-1270

ometrically as the (deprojected) overlapping area be-1271

tween the ith integration stripe and the jth radial bin.1272

Given the number of stripes/bins and their width in an-1273

gular units, one can calculate all the matrix elements1274

according to this geometric interpretation. One can1275

then compute the inverse of A and use it to convert the1276

flux density sequence S1, S2, ..., Sn to the radial surface1277

brightness profile I1, I2, ..., In.1278

We note that this matrix-based implementation dif-1279

fers from the iterative approach adopted by Warmels1280

(1988). There, the radial surface brightness profile is1281

solved iteratively using the Richardson–Lucy algorithm1282

(Richardson 1972; Lucy 1974). While this algorithm has1283

desirable features such as enforcing nonnegative surface1284

brightness and remaining robust against noise, its com-1285

putational cost becomes non-negligible when applied to1286

thousands of galaxies with six-band images at different1287

resolutions. Our matrix-based implementation is much1288

less computation-intensive and thus more practical when1289

dealing with a large galaxy sample, as is the case with1290

this study.1291

To account for the effect of noise, we calculate the1292

measurement errors on the stripe-integrated flux densi-1293

ties S1, S2, ..., Sn, propagate them to the output surface1294

brightness profile I1, I2, ..., In, and truncate the profile1295

where the S/N ratio per bin drops below 3. The effect1296

of noise accumulates from large to small galactocentric1297

radius in this setup. As a result, the surface brightness1298

profile derived from stripe integral often drops below1299

S/N = 3 at smaller radii compared to that derived from1300

direct radial binning for low-inclination galaxies.1301

Another notable caveat when applying the stripe inte-1302

gral method to our data is the presence of pixels masked1303

due to the presence of foreground stars or background1304

galaxies (see subsection 2.1) and outlier pixels (e.g., un-1305

masked stars). For masked pixels, we cannot simply1306

assign them the mean or median of the unmasked pixels1307

in a stripe because we do not expect those pixels to have1308

similar surface brightnesses (this differs from the case of1309

radial binning). For unmasked stars, the effect of these1310

outliers can accumulate and end up affecting the output1311

surface brightness profile across all inner radial bins.1312

To address these issues, we prepare the images in the1313

following way before calculating the stripe integral: for1314

each pixel in the image, we find its reflection about the1315

galaxy center, major axis, and minor axis, and use the1316

median among these four pixels (ignoring masked pix-1317

els) to replace the original pixel value. This step lever-1318

ages the four-fold symmetry about the galaxy axes ex-1319

pected for axisymmetric galaxy disks at all inclination1320

angles. It allows for filling in masked pixels in a reason-1321

able way and reduces the impact of outlier pixels on the1322

stripe integral calculation because they contribute only1323

1 of 4 points in the median. For moderately inclined1324

galaxies, we generally see better agreement between the1325

stripe integral-based results and radial binning after im-1326

plementing this preparatory step, which confirms its ef-1327

fectiveness.1328

B. RESOLUTION EFFECTS1329

One of the key intermediate measurements in this1330

work is the galaxy half-light radius, r50, which we derive1331

from the radial surface brightness profile for each band1332

(see subsubsection 2.2.1). This measurement can be af-1333

fected by the finite resolution of the images, especially1334

when the target galaxy is small and its radial profile is1335

not fully resolved. In this appendix, we assess this effect1336

by analyzing images of mock galaxies with varying sizes1337

and inclination angles and quantifying the systematic1338

biases due to resolution limit.1339

We create a set of mock images of galaxies. Each1340

model is an axisymmetric disk with an exponential sur-1341

face brightness profile, but with varying galaxy sizes and1342

inclination angles. The ratio of the galaxy size, deter-1343

mined by the exponential scale length (rscale, true), to the1344

PSF size (θPSF), determines how well the galaxy is re-1345

solved. We define a grid that spans rscale, true/θPSF =1346

0.1−5.0, from unresolved to well resolved. Our grid of1347

inclinations spans i = 0◦−85◦, i.e., from face-on to al-1348

most edge-on.1349

For each combination of rscale, true/θPSF and i, we1350

project a disk with an exponential surface brightness1351

profile onto the sky plane and convolve it with the appro-1352

priate Gaussian PSF to create a mock image. We then1353

measure its surface brightness profile via both the radial1354

binning and stripe integral approaches, and so derive the1355

half-light radius (r50, obs) in the same way as we would1356

for a real galaxy (see subsection 2.2). By comparing the1357

observed r50, obs and true value r50, true ≈ 1.68 rscale, true1358

for each mock galaxy, we measure the systematic bias1359

imposed by finite resolution.1360

The left panel in Figure B2 shows the results of1361

these experiments. As expected, the ratio of observed1362

to true galaxy size (r50, obs/r50, true) is close to unity1363

in the well-resolved regime, i.e., rscale, true/θPSF > 2.1364

The galaxy size becomes increasingly overestimated1365

at smaller r50, true/θPSF, reaching a factor of 2 at1366

rscale, true/θPSF ≈ 0.2−0.4. The colored lines show a1367

secondary dependence on the inclination angle when1368
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Figure B2. Effects of finite data resolution on galaxy half-light radius (r50) measurements. The y-axes show the discrepancy
between the observed half-light radius (r50, obs) and the true value (r50, true), which diminishes as the galaxy becomes better
resolved (towards larger x values). The x-axis represents the ratio of galaxy exponential scale radius (rscale, true) over PSF size
(θPSF) in the left panel, or the ratio of the observed effective radius (r50, obs) over PSF size in the right panel. When measuring
r50 with the direct radial binning method (see subsection 2.2), resolution-induced discrepancies are more substantial for more
inclined galaxies (brighter colored lines); in contrast, r50 measured via the stripe integral method (see subsection 2.2 and
Appendix A) is insensitive to galaxy inclination. Results shown by the right panel can be used to correct for resolution-induced
biases in r50, as both r50, obs/θPSF (x-axis) and i (color-code) are directly measurable from observations.

measuring the surface brightness profile via radial bin-1369

ning. As expected, we observe no dependence of1370

r50, obs/r50, true on the inclination when inferring r50, obs1371

using the stripe integral technique.1372

Based on these results, we correct our galaxy size1373

measurements for resolution-induced bias. To do this,1374

we first recast our model (rscale, true/θPSF, i) grid into a1375

(r50, obs/θPSF, i) grid, in which both parameters can be1376

measured from observations. This is done by calculating1377

r50, obs/θPSF = (r50, obs/r50, true)× (1.68 rscale, true/θPSF)1378

for each node in the model grid. Then we interpolate1379

the r50, obs/r50, true values from the model grid nodes1380

(see Figure B2 right panel) to cover the corresponding1381

(r50, obs/θPSF, i) space spanned by our grid. At high1382

r50, obs/θPSF > 5 i.e., outside our measured grid, we1383

treat r50, obs as the true value, since virtually no cor-1384

rection is required. At low r50, obs/θPSF, we truncate1385

the interpolated values at r50, obs/r50, true = 2, beyond1386

which this correction factor becomes too large and too1387

sensitive to small variations in the input parameter. In1388

those cases, we deem it impossible to robustly recover1389

the true galaxy size r50, true from the observations.1390

C. CONVERSION FACTOR MAPS1391

We provide two-dimensional predicted αCO maps for1392

several modern CO surveys, including COMING (Sorai1393

et al. 2019), HERACLES (Leroy et al. 2009), PHANGS–1394

ALMA (Leroy et al. 2021a), and VERTICO (Brown1395

et al. 2021). To maximize the utility of these maps,1396

we refine the data processing for each sample by (1)1397

updating key galaxy parameters (e.g., inclination and1398

position angles) to match the adopted values in the cor-1399

responding survey papers, (2) matching the WCS grids1400

of the αCO maps to the CO maps published by each sur-1401

vey, and (3) visually inspecting all products and making1402

additional adjustments when necessary. These maps, to-1403

gether with other data products from this project, will1404

be publicly available in a Canadian Astronomy Data1405

Centre (CADC) archive.1406

We also considered other local galaxy CO surveys such1407

as AlFoCS (Zabel et al. 2019), ALMaQUEST (Lin et al.1408

2020), CARMA–EDGE (Bolatto et al. 2017), and the1409

Fornax ACA survey (Morokuma-Matsui et al. 2022).1410

However, the overlaps between these samples and ours1411

are limited due to mismatches in the sample selection1412

criteria, i.e., the distance range (for ALMaQUEST and1413

CARMA–EDGE) or stellar mass cutoff (for the Fornax1414

surveys). Since the selection of z0MGS is driven by1415

the resolution and sensitivity of WISE, this implies that1416

other data sets are likely better suited to underpin con-1417

version factor estimates for those surveys. Therefore, we1418

consider that creating conversion factor maps for these1419

samples is beyond the scope of this work and more suit-1420

able for dedicated follow-up efforts.1421

D. PYTHON IMPLEMENTATION OF1422

CONVERSION FACTOR PRESCRIPTIONS1423

We provide CO_conversion_factor, a Python pack-1424

age that is pip-installable16 and compiles many exist-1425

ing CO-to-H2 conversion factor prescriptions in the lit-1426

erature. In addition to the prescriptions used in this1427

16 https://pypi.org/project/CO-conversion-factor/

https://pypi.org/project/CO-conversion-factor/
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work (Bolatto et al. 2013; Gong et al. 2020; Schinnerer1428

& Leroy 2024), the compilation also includes Narayanan1429

et al. (2012), Amorín et al. (2016), Accurso et al. (2017),1430

Sun et al. (2020), and Teng et al. (2024). Each pre-1431

scription (or family of prescriptions) is implemented as1432

a stand-alone Python function that takes a set of input1433

parameters relevant to the prescription (such as metal-1434

licity or gas mass surface density) and returns its con-1435

version factor prediction. Note that these prescriptions1436

are often calibrated within a finite range of input param-1437

eters. Their applications should therefore be limited to1438

within the same range of parameter space.1439

Since metallicity is the most common input param-1440

eter for these prescriptions, but the covering fraction1441

of high-quality metallicity measurements remains low1442

among nearby galaxies, the package also includes the1443

scaling relation-based metallicity prescriptions used in1444

this work (subsection 2.3). These prescriptions lever-1445

age galaxy mass-metallicity relations and metallicity ra-1446

dial gradients measured in large surveys like CALIFA or1447

SAMI (Sánchez et al. 2014, 2017, 2019). We recommend1448

using these prescriptions only when direct observational1449

measurements are not available.1450
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