

Physical Conditions and Kinematics in the Orion Molecular Cloud-1 Filaments

Yu-Hsuan Teng (ASIAA/NTU) and Naomi Hirano (ASIAA)

Introduction

Background

- Filaments have been commonly observed in star-forming clouds from parsec scale to sub-parsec scale
- Such structure may be important in star formation process, and may provide clues of the origin of star-forming regions

Observations

- Source—Orion molecular cloud 1 (OMC1)
 - \rightarrow distance: ~400 pc; nearest high-mass star-forming region
- Line— N_2H^+ J=3-2
- \rightarrow critical density ~10⁶ cm⁻³; abundant in cold regions (avoid Orion KL)
- Telescopes—SMA (144 pointing mosaic) + SMT (OTF mapping)

Physical Conditions

- The eastern part of OMC1 has higher intensity ratios
- \rightarrow higher T_{kin} from the RADEX non-LTE model
- The filament regions have lower intensity ratios than the non-filament regions
 → high density + low Tkin

N₂H⁺ 3-2 / 1-0 line ratio

- Most emissions come from the filamentary structure having a typical FWHM of 0.02 – 0.03 pc
- No significant emission at the Orion KL region due to the destruction of N₂H⁺ molecules in active regions
- •Clear velocity transitions at the boundaries of the Northern, Western, and Southern regions
- The three regions with different velocities converge at the Orion KL region → consistent with the MHD simulation of a global collapsing cloud [1]

500

400

Structural Properties

Filament Identification

- Using *FilFinder* package
- The main filament (blue) and the east filament (yellow) for 300 contain high-intensity clumpy cores → core fragmentation
 Line densities (M_☉/pc)
 Main filament: 90 100
 East filament: 50 60

	Filament— Core Regions (> 50 K∙km/s)		Filament—Low Intensity Regions (< 50 K•km/s)		Non-filament Regions	
$n(H_2) (cm^{-3})$	3×10^{7}	107	3×10^{6}	² 10 ⁷	10 ⁶	3×10^{6}
$\mathbf{T}_{kin}\left(K ight)$	19-23 ^{or}	18-20	17-22	or 13-16	>45 0	^r 21-30
$N(N_2H^+)(cm^{-2})$	10^{14}		3×10^{13}		10 ¹³	
Typical Ratio	1 ± 0.3		1 ± 0.3		2.2 ± 0.4	

Gas Kinematics

Core Formation Model [3]

• The phase shift between the intensity and velocity variations along the east filament is consistent with the core formation model

Conclusions

Core Identification

- ●Using 2-D Clumpfind
 → 10 cores identified
- Core masses in the filaments
- range from 0.1 3 ${
 m M}_{\odot}$
- → consistent with the derived core masses in [2]
 (SMA 1.3mm continuum data)

Main filamen

60

50

- The gas kinetic temperature in the eastern part of OMC1 is enhanced significantly to that of the remaining area, which is likely to be due to **external heating** from the high-mass stars in M42 and M43.
- The filaments have **higher densities** of ~10⁷ cm⁻³ and **lower temperatures** of ~15–20 K than the non-filament regions. The lower temperatures could be explained by the shielding from the external heating due to the dense gas in the filaments.
- •Kinematics of the east filament suggest that core formation is still ongoing in this region.

References

[1] Peretto et al., 2013, A&A, 555, A112[2] Teixeira et al., 2016, A&A, 587, A47

[3] Hacar & Tafalla, 2011, A&A, 533, A34 [4] Hacar et al., 2018, A&A, 610, A77