

High Star Formation Efficiency and Low CO-to-H₂ Conversion Factor in Nearby Barred Galaxy Centers Phangs

Yu-Hsuan (Eltha) Teng, Karin Sandstrom, I-Da Chiang, Jiayi Sun, Adam Leroy, Alberto Bolatto, Munan Gong, Antonio Usero, Simon Glover, Ralf Klessen, Daizhong Liu, Eva Schinnerer, and PHANGS Team

Background & Motivation

The CO-to-H₂ Conversion Factor (α_{CO})

• Since low-J CO lines are commonly used to trace molecular gas, α_{CO} is central to studying molecular gas and star formation in galaxies.

$$\alpha_{\rm CO} = \frac{M_{\rm mol}}{L_{\rm CO(1-0)}} = \frac{\Sigma_{\rm mol}}{I_{\rm CO(1-0)}} \left(\frac{M_{\odot}}{K\,{\rm km\,s^{-1}\,pc^2}} \right), \text{ where } M_{\rm mol} \sim 1.36\,M_{\rm H_2}$$

- While most studies assume a constant, Galactic-like α_{CO} , it is known that α_{CO} can vary by orders of magnitude in different environments.
- The variation of $\alpha_{\rm CO}$ causes major uncertainty in current molecular

Results

The Drivers and Tracers of α_{CO} in Barred Centers (Teng+ 2023)

+ We found a strong, positive correlation between α_{CO} and ¹²CO optical depth (τ_{CO}) across all three barred centers where CO emission is optically thick. This relation can explain $\sim 80\%$ of the observed α_{CO} variation, implying that τ_{CO} is the primary driver of $\alpha_{\rm CO}$ in these barred centers.

gas measurements, leading to biased star formation efficiencies and various fundamental properties (e.g., virial parameter, free-fall time).

$\alpha_{\rm CO}$ in Galaxy Centers

- Many barred galaxy centers, including our Galactic Center, are found to have lower α_{CO} than the standard Galactic disk value.
- The drop of α_{CO} in galaxy centers can be explained by CO emissivity variations due to higher gas temperature and/or lower opacity that originate from intense star formation or the associated gas dynamics.
- There is currently not a $\alpha_{\rm CO}$ prescription that accounts for emissivity variations in galaxy centers. It is challenging, partly because the ways of measuring α_{CO} across nearby galaxies are limited.
- We have developed a new $\alpha_{\rm CO}$ prescription based on our $\alpha_{\rm CO}$ measurements in a set of nearby galaxy centers using dust and CO isotopologue observations.
- We also investigate the impact of current and new prescriptions on the estimation of star formation efficiency in various types of galaxies and galactic nuclei, using the PHANGS-ALMA Large Program dataset.

Measurements

Multi-line CO Isotopologues (Teng+ 2022, 2023)

+ Assuming a CO/H₂ abundance (x_{co}) of 3e-4, we found a clear trend of α_{CO} decreasing with the observed CO(2-1) line width. The trend extrapolates well to the standard MW disk value. These suggest that velocity dispersion mainly traces $\tau_{\rm CO}$ changes, and thus it can be a useful indicator for predicting $\alpha_{\rm CO}$.

A New α_{co} Prescription Capturing Emissivity Effects

A similar anti-correlation of α_{CO} and Δv_{CO} is also seen in 2-kpc resolution measurements of α_{CO} (from Chiang+ 2023 in prep) with kpc-averaged $\Delta v_{CO(2-1)}$ measured at 150 pc scales (from Sun+ 2022). This includes **12 barred and non-barred galaxies** out to R ~10 kpc.

 $\log \alpha_{\rm CO} = -0.83 \log \langle \Delta \nu_{\rm CO} \rangle_{150 \rm pc} + 1.06$

- ALMA Band 3, 6, 7 observations + multi-line *RADEX* modeling
 - ¹²CO(1-0), ¹²CO(2-1), ¹³CO(2-1), ¹³CO(3-2), C¹⁸O(2-1), C¹⁸O(3-2)
 - Covered the inner ~ 2 kpc of three **barred galaxy centers**
 - Matched to 100 pc resolutions for all six lines
 - Modeled gas density, temperature, optical depth, and abundances

+ α_{CO} is 4-15x lower than the standard MW value across all three centers, indicating a 5-10x higher star formation efficiency in their central kpc than using a MW α_{CO} .

+ α_{CO} drops substantially in the **bar-driven inflows** of NGC which is in close agreement with our prediction based on barred galaxy centers. This supports that velocity dispersion can be used to trace optical depth and α_{CO} variations in galaxy centers.

Implications for Star Formation Efficiency (Teng+ 2023 in prep)

The derived molecular gas depletion time (t_{dep}) in 12 galaxy centers, using measured α_{CO} via dust and CO isotopologues vs. MW α_{CO} :

A clear separation in t_{dep} is found between barred non-barred galaxy and centers, suggesting high star formation efficiency in barred centers.

Using the measured $\alpha_{\rm CO}$, $t_{\rm dep}$ in the central 1.5 kpc of these galaxies are on average 4-5x lower than using a MW α_{CO} .

Galactocentric Radius (kpc)

Dust-based α_{CO} **Estimates** (*Chiang*+ 2023 in prep)

 $\alpha_{\rm CO}$ in ~40 nearby galaxies at 2 kpc resolution, using measurements of dust and atomic gas surface densities (Σ_{dust} , Σ_{atom}), CO integrated intensity (I_{CO}) , metallicity (Z), and assuming dust-to-metals ratio (D/M).

$$\alpha_{\rm CO} = (\Sigma_{\rm gas} - \Sigma_{\rm atom})/I_{\rm CO(1-0)}$$
, where $\Sigma_{\rm gas} = \frac{\Sigma_{\rm dust}}{\left(\frac{Z}{1-Z}\right)(D/M)}$

References

[1] Bolatto et al., 2013, ARA&A, 51, 207 [2] Chiang, I-D. et al., 2023, in prep [3] Querejeta et al., 2021, A&A, 656, A133 [4] Sandstrom et al., 2013, ApJ, 777, 5

[5] Sun et al., 2022, AJ, 164, 43 [6] Teng et al., 2022, ApJ, 925, 72 [7] Teng et al., 2023, ApJ, arXiv:2304.04732 [8] Teng, Y.-H. et al., 2023, in prep

A similar comparison of the derived t_{dep} in 64 galaxy centers from the PHANGS-ALMA sample, applying our Δv -based α_{CO} prescription:

prescription reveals Our that barred centers have distinctly higher star formation efficiency than non-barred centers, while the MW using $\alpha_{\rm CO}$ obscures such difference. With the MW α_{CO} , star formation efficiencies in barred galaxy centers are overall underestimated by a factor of 3-4.